3 research outputs found
Inelastic chaotic scattering on a Bose-Einstein condensate
We devise a microscopic scattering approach to probe the excitation spectrum
of a Bose-Einstein condensate. We show that the experimentally accessible
scattering cross section exhibits universal Ericson fluctuations, with
characteristic properties rooted in the underlying classical field equations.Comment: 11 pages, 5 figure
Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates
We describe a versatile and simple scheme for producing magnetically and
optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil
transporter apparatus. The apparatus features a TOP trap that incorporates the
movable quadrupole coils used for magneto-optical trapping and long-distance
magnetic transport of atomic clouds. As a stand-alone device, this trap allows
for the stable production of condensates containing up to one million atoms. In
combination with an optical dipole trap, the TOP trap acts as a funnel for
efficient loading, after which the quadrupole coils can be retracted, thereby
maximizing optical access. The robustness of this scheme is illustrated by
realizing the superfluid-to-Mott insulator transition in a three-dimensional
optical lattice
Thermometry with spin-dependent lattices
We propose a method for measuring the temperature of strongly correlated
phases of ultracold atom gases confined in spin-dependent optical lattices. In
this technique, a small number of "impurity" atoms--trapped in a state that
does not experience the lattice potential--are in thermal contact with atoms
bound to the lattice. The impurity serves as a thermometer for the system
because its temperature can be straightforwardly measured using time-of-flight
expansion velocity. This technique may be useful for resolving many open
questions regarding thermalization in these isolated systems. We discuss the
theory behind this method and demonstrate proof-of-principle experiments,
including the first realization of a 3D spin-dependent lattice in the strongly
correlated regime.Comment: 22 pages, 8 figures v2: Several references added; Section on heating
rates updated to include dipole fluctuation terms; Section added on the
limitations of the proposed method. To appear in New Journal of Physic