261 research outputs found

    Rack-and-pinion effects in molecular rolling friction

    Full text link
    Rolling lubrication with spherical molecules working as 'nanobearings' has failed experimentally so far, without a full understanding of the physics involved and of the reasons why. Past model simulations and common sense have shown that molecules can only roll when they are not too closely packed to jam. The same type of model simulations now shows in addition that molecular rolling friction can develop deep minima once the molecule's peripheral 'pitch' can match the substrate periodicity, much as ordinary cogwheels do in a rack-and-pinion system. When the pinion-rack matching is bad, the driven molecular rolling becomes discontinuous and noisy, whence energy is dissipated and friction is large. This suggests experiments to be conducted by varying the rack-and-pinion matching. That could be pursued not only by changing molecules and substrates, but also by applying different sliding directions within the same system, or by applying pressure, to change the effective matching.Comment: 5 figure

    Collective effects at frictional interfaces

    Get PDF
    We discuss the role of the long-range elastic interaction between the contacts inside an inhomogeneous frictional interface. The interaction produces a characteristic elastic correlation length λc=a2E/kc\lambda_c = a^2 E / k_c (where aa is the distance between the contacts, kck_c is the elastic constant of a contact, and EE is the Young modulus of the sliding body), below which the slider may be considered as a rigid body. The strong inter-contact interaction leads to a narrowing of the effective threshold distribution for contact breaking and enhances the chances for an elastic instability to appear. Above the correlation length, r>λcr > \lambda_c, the interaction leads to screening of local perturbations in the interface, or to appearance of collective modes --- frictional cracks propagating as solitary waves

    The effect of normal load force and roughness on the dynamic traction developed at the shoe-surface interface in tennis

    Get PDF
    During tennis-specific movements, such as accelerating and side stepping, the dynamic traction provided by the shoe-surface combination plays an important role in the injury risk and performance of the player. Acrylic hard court tennis surfaces have been reported to have increased injury occurrence, partly caused by increased traction that developed at the shoe-surface interface. Often mechanical test methods used for the testing and categorisation of playing surfaces do not tend to simulate loads occurring during participation on the surface, and thus are unlikely to predict the human response to the surface. A traction testing device, discussed in this paper, has been used to mechanically measure the dynamic traction force between the shoe and the surface under a range of normal loading conditions that are relevant to real-life play. Acrylic hard court tennis surfaces generally have a rough surface topography, due to their sand and acrylic paint mixed top coating. Surface micro-roughness will influence the friction mechanisms present during viscoelastic contacts, as found in footwear-surface interactions. This paper aims to further understand the influence micro-roughness and normal force has on the dynamic traction that develops at the shoe-surface interface on acrylic hard court tennis surfaces. The micro-roughness and traction of a controlled set of acrylic hard court tennis surfaces have been measured. The relationships between micro-roughness, normal force, and traction force are discussed. © 2013 The Author(s)

    Billiards, scattering by rough obstacles, and optimal mass transportation

    Get PDF
    This article presents a brief exposition of recent results of the author on billiard scattering by rough obstacles. We define the notion of a rough body and give a characterization of scattering by rough bodies. Then we define the resistance of a rough body; it can be interpreted as the aerodynamic resistance of the somersaulting body moving through a rarefied medium. We solve the problems of maximum and minimum resistance for rough bodies (more precisely, for bodies obtained by roughening a prescribed convex set) in arbitrary dimension. Surprisingly, these problems are reduced to special problems of optimal mass transportation on the sphere

    Existence of a Tribo-Modified Surface Layer on SBR Elastomers: Balance Between Formation and Wear of the Modified Layer

    Get PDF
    In most of the tribological contacts, the composition and tribological properties of the original interface will change during use. The tribo-films, with modified properties compared to the bulk, are dynamic structures that play a significant role in friction. The existence of a tribo-modified surface layer and its importance on the overall friction of elastomers has been shown both theoretically and experimentally before. The characteristics of the modified surface layer deserve specific attention since the tribological properties of elastomers in contact with a rough counter-surface are determined by these modified surfaces together with the properties of bulk of the material. Both the formation of the modified layer and the break down (wear) of it are of importance in determining the existence and thickness of the tribo-modified layer. In this study, the importance of the wear is emphasized by comparing two styrene butadiene rubber-based elastomers in contact with a granite sphere. A current status of perception of the removal and the stability of the modified surface layers on rubbers is introduced as well as experimental work related to this matter and discussion within literature. Pin-on-disk friction tests are performed on two SBR-based samples in contact with a granite sphere under controlled environmental conditions to form the modified surface layer. Although the hysteresis part of the friction force which has a minor contribution in the overall friction is not markedly different, the total measured friction coefficient differs significantly. Mechanical changes both inside and outside the wear track are determined by atomic force microscope nano-indentations at different timescales to examine the modified surface layer on the test samples. The specific wear rates of the two tribo-systems are compared, and the existence of the modified surface layer, the different measured friction coefficient and the running-in distances toward steady-state friction are explained considering different wear rates. A conceptual model is presented, correlating the energy input into the tribo-system and the existence of a modified surface layer

    Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test

    Get PDF
    The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test

    Logarithmic rate dependence in deforming granular materials

    Full text link
    Rate-independence for stresses within a granular material is a basic tenet of many models for slow dense granular flows. By contrast, logarithmic rate dependence of stresses is found in solid-on-solid friction, in geological settings, and elsewhere. In this work, we show that logarithmic rate-dependence occurs in granular materials for plastic (irreversible) deformations that occur during shearing but not for elastic (reversible) deformations, such as those that occur under moderate repetitive compression. Increasing the shearing rate, \Omega, leads to an increase in the stress and the stress fluctuations that at least qualitatively resemble what occurs due to an increase in the density. Increases in \Omega also lead to qualitative changes in the distributions of stress build-up and relaxation events. If shearing is stopped at t=0, stress relaxations occur with \sigma(t)/ \sigma(t=0) \simeq A \log(t/t_0). This collective relaxation of the stress network over logarithmically long times provides a mechanism for rate-dependent strengthening.Comment: 4 pages, 5 figures. RevTeX

    A mathematical modelling study of an athlete's sprint time when towing a weighted sled

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12283-013-0114-2.This study used a mathematical model to examine the effects of the sled, the running surface, and the athlete on sprint time when towing a weighted sled. Simulations showed that ratio scaling is an appropriate method of normalising the weight of the sled for athletes of different body size. The relationship between sprint time and the weight of the sled was almost linear, as long as the sled was not excessively heavy. The athlete’s sprint time and rate of increase in sprint time were greater on running surfaces with a greater coefficient of friction, and on any given running surface an athlete with a greater power-to-weight ratio had a lower rate of increase in sprint time. The angle of the tow cord did not have a substantial effect on an athlete’s sprint time. This greater understanding should help coaches set the training intensity experienced by an athlete when performing a sled-towing exercise

    Adhesion along metal-polymer interfaces during plastic deformation

    Get PDF
    In this paper a numerical study is presented that concentrates on the influence of the interface roughness that develops during plastic deformation of a metal, on the work of adhesion and on the change of interface energy upon contact with a glassy polymer. The polymer coating is described with a constitutive law that mimics the behavior of Poly-Ethylene Terephthalate. It includes an elastic part, a yield stress, softening and hardening with increasing strains. For the interface between the metal and the polymer a mixed-mode (mode I and II) stress-separation law is applied that defines the interface energy and an interaction length scale. At the onset of deformation the surface of the substrate has a self-affine roughness characterized by the so-called Hurst exponent, a correlation length and an rms roughness amplitude, that evolves as a function of increasing strain. The findings are the following: the interface energy decreases until the strain at yield of the polymer coating. Interestingly, after yielding as the polymer starts to soften macroscopically, the decreasing average stress levels result in partial recovery of the interface energy at the interface. At higher strains, when macroscopic hardening develops the recovery of the interface stops and the interface energy decreases. The effect of coating thickness is discussed as well as the physical relevance of various model parameters
    • …
    corecore