976 research outputs found

    Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis

    Get PDF
    PMCID: PMC3212807This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Resolution of inflammation: an integrated view

    Get PDF
    O.S. is supported by the NWO (VIDI project 91712303), theDFG (SO876/3-1, SO876/6-1, FOR809, SFB914 TPB08), theGerman-Israeli Foundation, and the Else Kro¨ner FreseniusStiftung. M.P. is supported by the Wellcome Trust (program086867/Z/08), the Arthritis Research UK, the British HeartFoundation (PG/09/060 and PG/11/48/28981) and the MedicalResearch Council

    Chemerin15 inhibits neutrophil-mediated vascular inflammation and myocardial ischemia-reperfusion injury through ChemR23

    Get PDF
    Neutrophil activation and adhesion must be tightly controlled to prevent complications associated with excessive inflammatory responses. The role of the anti-inflammatory peptide chemerin15 (C15) and the receptor ChemR23 in neutrophil physiology is unknown. Here, we report that ChemR23 is expressed in neutrophil granules and rapidly upregulated upon neutrophil activation. C15 inhibits integrin activation and clustering, reducing neutrophil adhesion and chemotaxis in vitro. In the inflamed microvasculature, C15 rapidly modulates neutrophil physiology inducing adherent cell detachment from the inflamed endothelium, while reducing neutrophil recruitment and heart damage in a murine myocardial infarction model. These effects are mediated through ChemR23. We identify the C15/ChemR23 pathway as a new regulator and thus therapeutic target in neutrophil-driven pathologies

    Biphasic Modulation of NOS Expression, Protein and Nitrite Products by Hydroxocobalamin Underlies Its Protective Effect in Endotoxemic Shock: Downstream Regulation of COX-2, IL-1 beta, TNF-alpha, IL-6, and HMGB1 Expression

    Get PDF
    Background. NOS/•NO inhibitors are potential therapeutics for sepsis, yet they increase clinical mortality. However, there has been no in vivo investigation of the (in vitro) •NO scavenger, cobalamin’s (Cbl) endogenous effects on NOS/•NO/inflammatory mediators during the immune response to sepsis. Methods. We used quantitative polymerase chain reaction (qPCR), ELISA, Western blot, and NOS Griess assays, in a C57BL/6 mouse, acute endotoxaemia model. Results. During the immune response, pro-inflammatory phase, parenteral hydroxocobalamin (HOCbl) treatment partially inhibits hepatic, but not lung, iNOS mRNA and promotes lung eNOS mRNA, but attenuates the LPS hepatic rise in eNOS mRNA, whilst paradoxically promoting high iNOS/eNOS protein translation, but relatively moderate •NO production. HOCbl/NOS/•NO regulation is reciprocally associated with lower 4 h expression of TNF-α, IL-1β, COX-2, and lower circulating TNF-α, but not IL-6. In resolution, 24 h after LPS, HOCbl completely abrogates a major late mediator of sepsis mortality, high mobility group box 1 (HMGB1) mRNA, inhibits iNOS mRNA, and attenuates LPS-induced hepatic inhibition of eNOS mRNA, whilst showing increased, but still moderate, NOS activity, relative to LPS only. experiments (LPS+D-Galactosamine) HOCbl afforded significant, dose-dependent protection in mice Conclusions. HOCbl produces a complex, time- and organ-dependent, selective regulation of NOS/•NO during endotoxaemia, corollary regulation of downstream inflammatory mediators, and increased survival. This merits clinical evaluation

    A novel mutation in SACS gene in a family from southern Italy

    Get PDF
    A form of autosomal recessive spastic ataxia (ARSACS) has been described in the Charlevoix and Saguenay regions of Quebec. So far a frameshift and a nonsense mutation have been identified in the SACS gene. The authors report a new mutation (1859insC), leading to a frameshift with a premature termination of the gene product sacsin, in two sisters from consanguineous parents. The phenotype is similar to previously described patients with ARSACS

    Definition of a Novel Pathway Centered on Lysophosphatidic Acid To Recruit Monocytes during the Resolution Phase of Tissue Inflammation.

    Get PDF
    Blood-derived monocytes remove apoptotic cells and terminate inflammation in settings as diverse as atherosclerosis and Alzheimer's disease. They express high levels of the proresolving receptor ALX/FPR2, which is activated by the protein annexin A1 (ANXA1), found in high abundance in inflammatory exudates. Using primary human blood monocytes from healthy donors, we identified ANXA1 as a potent CD14+CD16- monocyte chemoattractant, acting via ALX/FPR2. Downstream signaling pathway analysis revealed the p38 MAPK-mediated activation of a calcium independent phospholipase A2 with resultant synthesis of lysophosphatidic acid (LPA) driving chemotaxis through LPA receptor 2 and actin cytoskeletal mobilization. In vivo experiments confirmed ANXA1 as an independent phospholipase A2-dependent monocyte recruiter; congruently, monocyte recruitment was significantly impaired during ongoing zymosan-induced inflammation in AnxA1-/- or alx/fpr2/3-/- mice. Using a dorsal air-pouch model, passive transfer of apoptotic neutrophils between AnxA1-/- and wild-type mice identified effete neutrophils as the primary source of soluble ANXA1 in inflammatory resolution. Together, these data elucidate a novel proresolving network centered on ANXA1 and LPA generation and identify previously unappreciated determinants of ANXA1 and ALX/FPR2 signaling in monocytes

    Both MC1 and MC3 Receptors Provide Protection From Cerebral Ischemia-Reperfusion-Induced Neutrophil Recruitment.

    Get PDF
    Objective Neutrophil recruitment is a key process in the pathogenesis of stroke, and may provide a valuable therapeutic target. Targeting the melanocortin receptors (MC) has previously shown to inhibit leukocyte recruitment in peripheral inflammation, however it is not known whether treatments are effective in the unique cerebral microvascular environment. Here, we provide novel research highlighting the effects of the melanocortin peptides on cerebral neutrophil recruitment, demonstrating important yet discrete roles for both MC1 and MC3. Approach and Results Using intravital microscopy, in two distinct murine models of cerebral ischemia-reperfusion (I/R) injury we have investigated melanocortin control over neutrophil recruitment. Following global I/R, pharmacological treatments suppressed pathological neutrophil recruitment. MC1 selective treatment rapidly inhibited neutrophil recruitment while a non-selective MC agonist provided protection even when co-administered with an MC3/4 antagonist, suggesting the importance of early MC1 signaling. However by 2h reperfusion, MC1 mediated effects were reduced, and MC3 anti-inflammatory circuits predominated. Mice bearing a non-functional MC1 displayed a transient exacerbation of neutrophil recruitment following global I/R, which diminished by 2h. However importantly, enhanced inflammatory responses in both MC1 mutant and MC3 -/- mice resulted in increased infarct size and poor functional outcome following focal I/R. Furthermore we utilized an in vitro model of leukocyte recruitment to demonstrate these anti-inflammatory actions are also effective in human cells. Conclusions These studies reveal for the first time melanocortin control over neutrophil recruitment in the unique pathophysiological context of cerebral I/R, whilst also demonstrating the potential therapeutic value of targeting multiple MCs in developing effective therapeutics

    The peritoneal tumour microenvironment of high-grade serous ovarian cancer

    Get PDF
    High-grade serous ovarian cancer (HGSC) disseminates early and extensively throughout the peritoneal space, causing multiple lesions that are a major clinical problem. The aim of this study was to investigate the cellular composition of peritoneal tumour deposits in patient biopsies and their evolution in mouse models using immunohistochemistry, intravital microscopy, confocal microscopy, and 3D modelling. Tumour deposits from the omentum of HGSC patients contained a prominent leukocyte infiltrate of CD3(+) T cells and CD68(+) macrophages, with occasional neutrophils. Alpha-smooth muscle actin(+) (α-SMA(+) ) pericytes and/or fibroblasts surrounded these well-vascularized tumour deposits. Using the murine bowel mesentery as an accessible mouse peritoneal tissue that could be easily imaged, and two different transplantable models, we found multiple microscopic tumour deposits after i.p. injection of malignant cells. Attachment to the peritoneal surface was rapid (6-48 h) with an extensive CD45(+) leukocyte infiltrate visible by 48 h. This infiltrate persisted until end point and in the syngeneic murine ID8 model, it primarily consisted of CD3(+) T lymphocytes and CD68(+) macrophages with α-SMA(+) cells also involved from the earliest stages. A majority of tumour deposits developed above existing mesenteric blood vessels, but in avascular spaces new blood vessels tracked towards the tumour deposits by 2-3 weeks in the IGROV-1 xenografts and 6 weeks in the ID8 syngeneic model; a vigorous convoluted blood supply was established by end point. Inhibition of tumour cell cytokine production by stable expression of shRNA to CXCR4 in IGROV-1 cells did not influence the attachment of cells to the mesentery but delayed neovascularization and reduced tumour deposit size. We conclude that the multiple peritoneal tumour deposits found in HGSC patients can be modelled in the mouse. The techniques described here may be useful for assessing treatments that target the disseminated stage of this disease

    Annexin-A1 protein and its relationship to cortisol in human saliva

    Get PDF
    Salivary cortisol is commonly used as a clinical biomarker of endocrine status and also as a marker of psychosocial stress. Annexin-A1 (AnxA1) is an anti-inflammatory protein whose expression is modulated by glucocorticoids. Our principal objectives were to (i) detect the presence of and (ii) measure AnxA1 protein in whole human saliva and to (iii) investigate whether salivary cortisol and AnxA1 are correlated in healthy humans. A total of 37 healthy participants (male and female) were used in the study. Saliva was collected using salivette tubes. Salivary cortisol and AnxA1 protein were sampled at between 3 and 6 time points over 24 h and measured for cortisol and AnxA1 protein using specific ELISA's. The presence of salivary AnxA1 protein was confirmed by Western blotting. AnxA1 protein is detectable in whole human saliva, as detected by Western blot analysis and ELISA. A diurnal rhythm was evident in both salivary cortisol (P 0.05), whereas salivary cortisol was significantly elevated between time 0 and 30 min post waking (P < 0.001). AnxA1 protein correlates positively with salivary cortisol, indicating that cortisol is most likely a regulator of AnxA1 in human saliva

    Old drugs with new skills: fenoprofen as an allosteric enhancer at melanocortin receptor 3

    Get PDF
    This project was supported by Queen Mary Innovation Ltd Proof of Concept Fund (2012/13) and The William Harvey Research Foundation
    corecore