859 research outputs found

    Design and evaluation of an osteogenesis-on-a-chip microfluidic device incorporating 3D cell culture

    Get PDF
    Microfluidic-based tissue-on-a-chip devices have generated significant research interest for biomedical applications, such as pharmaceutical development, as they can be used for small volume, high throughput studies on the effects of therapeutics on tissue-mimics. Tissue-on-a-chip devices are evolving from basic 2D cell cultures incorporated into microfluidic devices to complex 3D approaches, with modern designs aimed at recapitulating the dynamic and mechanical environment of the native tissue. Thus far, most tissue-on-a-chip research has concentrated on organs involved with drug uptake, metabolism and removal (e.g., lung, skin, liver, and kidney); however, models of the drug metabolite target organs will be essential to provide information on therapeutic efficacy. Here, we develop an osteogenesis-on-a-chip device that comprises a 3D environment and fluid shear stresses, both important features of bone. This inexpensive, easy-to-fabricate system based on a polymerized High Internal Phase Emulsion (polyHIPE) supports proliferation, differentiation and extracellular matrix production of human embryonic stem cell-derived mesenchymal progenitor cells (hES-MPs) over extended time periods (up to 21 days). Cells respond positively to both chemical and mechanical stimulation of osteogenesis, with an intermittent flow profile containing rest periods strongly promoting differentiation and matrix formation in comparison to static and continuous flow. Flow and shear stresses were modeled using computational fluid dynamics. Primary cilia were detectable on cells within the device channels demonstrating that this mechanosensory organelle is present in the complex 3D culture environment. In summary, this device aids the development of ‘next-generation’ tools for investigating novel therapeutics for bone in comparison with standard laboratory and animal testing

    Early quantitative coronary angiography of saphenous vein grafts for coronary artery bypass grafting harvested by means of open versus endoscopic saphenectomy: a prospective randomized trial

    Get PDF
    AbstractObjectiveEndoscopic saphenectomy is associated with a decreased incidence of wound complications without an increase in histologic trauma or endothelial dysfunction in published reports. Concern remains about the patency of saphenous vein grafts harvested endoscopically and the development of early intimal hyperplasia. The purpose of this study was to compare early quantitative coronary analysis of saphenous vein grafts used for coronary artery bypass grafting harvested with the open versus endoscopic techniques.MethodsForty patients undergoing primary coronary artery bypass grafting surgery with at least 1 saphenous vein graft were randomized preoperatively to open versus endoscopic saphenectomy with bipolar cauterization of side branches. Quantitative coronary angiography was performed a mean of 3 months (range, 1-9 months) after the operation.ResultsThere was no statistically significant difference in the patency rates of internal thoracic artery grafts between the open and endoscopic groups and no statistically significant difference in the patency rates of saphenous vein grafts between both groups (85.2% vs 84.4%, P = .991). Quantitative coronary angiography showed no difference in graft stenosis (≥50% of the internal diameter of the graft) in the body of the saphenous vein grafts in the open versus endoscopic saphenectomy groups (3.7% vs 0%, P = .280).ConclusionAngiographic appearance and patency rates of saphenous vein grafts harvested with the endoscopic technique are similar to those of saphenous vein grafts harvested with the open technique. These results support the use of endoscopic saphenectomy because of the known lower incidence of wound and infectious complications and superior functional results

    Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27

    Get PDF
    Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations

    The ultraviolet and vacuum ultraviolet absorption spectrum of gamma-pyrone; the singlet states studied by configuration interaction and density functional calculations

    Get PDF
    A synchrotron based vacuum ultraviolet absorption spectrum for γ-pyrone has been interpreted in terms of singlet excited electronic states, using a variety of coupled cluster, configuration interaction, and density functional calculations. The extremely weak spectral onset at 3.557 eV shows 8 vibrational peaks and following previous analyses is attributed to a forbidden 1A2 state. A contrasting broad peak with maximum at 5.381 eV has a relatively high cross-section of 30 Mb; this arises from three overlapping states, where a 1A1 state dominates over progressively weaker 1B2 and 1B1 states. After fitting the second band to a polynomial Gaussian function, and plotting the regular residuals (RR), over 20 vibrational peaks were revealed. We have had limited success in analyzing this fine structure. However, the small separation between these three states clearly shows that their vibrational satellites must overlap. Singlet valence and Rydberg state vibrational profiles were determined by configuration interaction using the CAM-B3LYP density functional. Vibrational analysis, using both Franck-Condon and Herzberg-Teller procedures showed that both procedures contributed to the profiles. Theoretical Rydberg states were evaluated by a highly focused CI procedure. Super-position of the lowest photoelectron spectral band on the VUV spectrum near 6.4 eV, shows that the 3s and 3p Rydberg states based on the 2B2 ionic state are present; those based on the other low-lying ionic state (X2B1) are destroyed by broadening; this is a dramatic extension of the broadening previously witnessed in our studies of halogenobenzenes.Peer reviewe

    The Photoreceptor Cell-Specific Nuclear Receptor Gene (PNR ) Accounts for Retinitis Pigmentosa in the Crypto-Jews from Portugal (Marranos), Survivors from the Spanish Inquisition

    Get PDF
    The last Crypto-Jews (Marranos) are the survivors of Spanish Jews who were persecuted in the late fifteenth century, escaped to Portugal and were forced to convert to save their lives. Isolated groups still exist in mountainous areas such as Belmonte in the Beira-Baixa province of Portugal. We report here the genetic study of a highly consanguineous endogamic population of Crypto-Jews of Belmonte affected with autosomal recessive retinitis pigmentosa (RP). A genome-wide search for homozygosity allowed us to localize the disease gene to chromosome 15q22-q24 (Zmax=2.95 at θ=0 at the D15S131 locus). Interestingly, the photoreceptor cell-specific nuclear receptor (PNR) gene, the expression of which is restricted to the outer nuclear layer of retinal photoreceptor cells, was found to map to the YAC contig encompassing the disease locus. A search for mutations allowed us to ascribe the RP of Crypto-Jews of Belmonte to a homozygous missense mutation in the PNR gene. Preliminary haplotype studies support the view that this mutation is relatively ancient but probably occurred after the population settled in Belmonte

    Monitoring of northern climate exposure

    Get PDF
    Currently, facility managers are faced with many advanced decisions regarding when and how to inspect, maintain, repair or renew existing facilities in a costeffective manner. The evolution of the deteriorations of road structures in reinforced concrete depends on the exposure of the elements to water in liquid form or vapour and to other aggressive agents such as chloride. Current models of ionic transport neglect the effect of real ionic concentration in contact with concrete structures, it means boundary conditions are considered with simple tendency as uniform concentration during the winter period and model parameters are derived from the fitting method. Therefore, it implies in ineffective prediction models of deterioration, i.e. steel rebar corrosion by chloride presence or carbonation, alkali-granular reaction, acid attacks, etc. Structure are sensitive to their environment and their interaction with it is directly related to the processes of deterioration. The degradation of structures exposed to salt-laden mist is faster in the wetter areas. On the contrary, the deterioration of the structures caused by salt spray in the drier zone is slower. The structures, exposed to splashing (precipitation, wind, splash, etc.), have a slower rate of degradation in the wetter regions. The amount of rain has an indirect effect in the process of deterioration of the structure exposed to salt-laden mist because it changes the contact time of chloride on the surface of the structures. For this purpose, a unique exposure monitoring was developed. This mobile station, named MExStUL, contains an atmospheric sensor and new possibilities of chloride detection contained in splashes, mist and static water near the road improving the real exposure of structure and the boundary conditions. First results highlight the real influence of environmental parameters on structures durability on highways. Salt concentration is not uniform during winter period and water thickness demonstrate important periods of drying

    Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System.

    Get PDF
    Rocking has long been known to promote sleep in infants and, more recently, also in adults, increasing NREM sleep stage N2 and enhancing EEG slow waves and spindles. Nevertheless, whether rocking also promotes sleep in other species, and what the underlying mechanisms are, has yet to be explored. In the current study, C57BL/6J mice equipped with EEG and EMG electrodes were rocked laterally during their main sleep period, i.e., the 12-h light phase. We observed that rocking affected sleep in mice with a faster optimal rate than in humans (1.0 versus 0.25 Hz). Specifically, rocking mice at 1.0 Hz increased time spent in NREM sleep through the shortening of wake episodes and accelerated sleep onset. Although rocking did not increase EEG activity in the slow-wave and spindle-frequency ranges in mice, EEG theta activity (6-10 Hz) during active wakefulness shifted toward slower frequencies. To test the hypothesis that the rocking effects are mediated through the vestibular system, we used the otoconia-deficient tilted (tlt) mouse, which cannot encode linear acceleration. Mice homozygous for the tlt mutation were insensitive to rocking at 1.0 Hz, while the sleep and EEG response of their heterozygous and wild-type littermates resembled those of C57BL/6J mice. Our findings demonstrate that rocking also promotes sleep in the mouse and that this effect requires input from functional otolithic organs of the vestibule. Our observations also demonstrate that the maximum linear acceleration applied, and not the rocking rate per se, is key in mediating the effects of rocking on sleep
    corecore