783 research outputs found
Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles
PEGylated gold nanoparticles are decorated with various amounts of human transferrin (Tf) to give a series of Tf-targeted particles with near-constant size and electrokinetic potential. The effects of Tf content on nanoparticle tumor targeting were investigated in mice bearing s.c. Neuro2A tumors. Quantitative biodistributions of the nanoparticles 24 h after i.v. tail-vein injections show that the nanoparticle accumulations in the tumors and other organs are independent of Tf. However, the nanoparticle localizations within a particular organ are influenced by the Tf content. In tumor tissue, the content of targeting ligands significantly influences the number of nanoparticles localized within the cancer cells. In liver tissue, high Tf content leads to small amounts of the nanoparticles residing in hepatocytes, whereas most nanoparticles remain in nonparenchymal cells. These results suggest that targeted nanoparticles can provide greater intracellular delivery of therapeutic agents to the cancer cells within solid tumors than their nontargeted analogs
Pre-analytical factors affecting whole blood and plasma glucose concentrations in loggerhead sea turtles (Caretta caretta)
Blood glucose is vital for many physiological pathways and can be quantified by clinical chemistry analyzers and in-house point-of-care (POC) devices. Pre-analytical and analytical factors can influence blood glucose measurements. This project aimed to investigate pre-analytical factors on whole blood and plasma glucose measurements in loggerhead sea turtles (Caretta caretta) by evaluating the effects of storage (refrigeration) up to 48h after sampling and of packed cell volume (PCV) on whole blood glucose analysis by POC glucometer (time series n = 13); and by evaluating the effects of storage (room temperature and refrigeration) on plasma glucose concentrations using a dry slide chemistry analyzer (DCA) at various conditions: immediate processing and delayed plasma separation from erythrocytes at 24h and 48h (time series n = 14). The POC glucometer had overall strong agreement with the DCA (CCC = 0.76, r = 0.84, Cb = 0.90), but consistently overestimated glucose concentrations (mean difference: +0.4 mmol/L). The POC glucometer results decreased significantly over time, resulting in a substantial decline within the first 2h (0.41±0.47 mmol/L; 8±9%) that could potentially alter clinical decisions, thereby highlighting the need for immediate analysis using this method. The effects of PCV on glucose could not be assessed, as the statistical significance was associated with one outlier. Storage method significantly affected plasma glucose measurements using DCA, with room temperature samples resulting in rapid decreases of 3.57±0.89 mmol/L (77±9%) over the first 48h, while refrigerated samples provided consistent plasma glucose results over the same time period (decrease of 0.26±0.23 mmol/L; 6±5%). The results from this study provide new insights into optimal blood sample handling and processing for glucose analysis in sea turtles, show the suitability of the POC glucometer as a rapid diagnostic test, and confirm the reliability of plasma glucose measurements using refrigeration. These findings emphasize the need to consider pre-/analytical factors when interpreting blood glucose results from loggerhead sea turtles
A clinically aligned experimental approach for quantitative characterization of patient-specific cardiovascular models
Recent improvements in computational tools opened the possibility of patient-specific modeling to aid clinicians during diagnosis, treatment, and monitoring. One example is the modeling of blood flow for surgical planning, where modeling can help predict the prognosis. Computational analysis is used to extract hemodynamic information about the case; however, these methods are sensitive to assumptions on blood properties, boundary conditions, and appropriate geometry accuracy. When available, experimental measurements can be used to validate the results and, among the modalities, ultrasound-based methods are suitable due to their relative low cost and non-invasiveness. This work proposes a procedure to create accurate patient-specific silicone replicas of blood vessels and a power Doppler compatible experimental setup able to simulate and measure realistic flow conditions. The assessment of silicone model geometry shows small discrepancies between these and the target geometries (median of surface error lies within 57 µm and 82 μm). Power Doppler measurements were compared against computational fluid dynamics results, showing discrepancies within 10% near the wall. The experimental approach offers a setup to quantify flow in in vitro systems and provide more accurate results where other techniques (e.g., particle image velocimetry and particle tracking velocimetry) have shown limitations due to the interference of the interface
The extracellular matrix microtopography drives critical changes in cellular motility and Rho A activity in colon cancer cells
We have shown that the microtopography (mT) underlying colon cancer changes as a tumor de-differentiates. We distinguish the well-differentiated mT based on the increasing number of "pits" and poorly differentiated mT on the basis of increasing number of "posts." We investigated Rho A as a mechanosensing protein using mT features derived from those observed in the ECM of colon cancer. We evaluated Rho A activity in less-tumorogenic (Caco-2 E) and more tumorigenic (SW620) colon cancer cell-lines on microfabricated pits and posts at 2.5 μm diameter and 200 nm depth/height. In Caco-2 E cells, we observed a decrease in Rho A activity as well as in the ratio of G/F actin on surfaces with either pits or posts but despite this low activity, knockdown of Rho A led to a significant decrease in confined motility suggesting that while Rho A activity is reduced on these surfaces it still plays an important role in controlling cellular response to barriers. In SW620 cells, we observed that Rho A activity was greatest in cells plated on a post microtopography which led to increased cell motility, and an increase in actin cytoskeletal turnover
β-glycerophosphate, not low magnitude fluid shear stress, increases osteocytogenesis in the osteoblast-to-osteocyte cell line IDG-SW3
AimAs osteoblasts deposit a mineralized collagen network, a subpopulation of these cells differentiates into osteocytes. Biochemical and mechanical stimuli, particularly fluid shear stress (FSS), are thought to regulate this, but their relative influence remains unclear. Here, we assess both biochemical and mechanical stimuli on long-term bone formation and osteocytogenesis using the osteoblast-osteocyte cell line IDG-SW3.MethodsDue to the relative novelty and uncommon culture conditions of IDG-SW3 versus other osteoblast-lineage cell lines, effects of temperature and media formulation on matrix deposition and osteocytogenesis were initially characterized. Subsequently, the relative influence of biochemical (β-glycerophosphate (βGP) and ascorbic acid 2-phosphate (AA2P)) and mechanical stimulation on osteocytogenesis was compared, with intermittent application of low magnitude FSS generated by see-saw rocker.ResultsβGP and AA2P supplementation were required for mineralization and osteocytogenesis, with 33°C cultures retaining a more osteoblastic phenotype and 37°C cultures undergoing significantly higher osteocytogenesis. βGP concentration positively correlated with calcium deposition, whilst AA2P stimulated alkaline phosphatase (ALP) activity and collagen deposition. We demonstrate that increasing βGP concentration also significantly enhances osteocytogenesis as quantified by the expression of green fluorescent protein linked to Dmp1. Intermittent FSS (~0.06 Pa) rocker had no effect on osteocytogenesis and matrix deposition.ConclusionsThis work demonstrates the suitability and ease with which IDG-SW3 can be utilized in osteocytogenesis studies. IDG-SW3 mineralization was only mediated through biochemical stimuli with no detectable effect of low magnitude FSS. Osteocytogenesis of IDG-SW3 primarily occurred in mineralized areas, further demonstrating the role mineralization of the bone extracellular matrix has in osteocyte differentiation
Conversation acts in task-oriented spoken dialogue
A linguistic form\u27s compositional, timeless meaning can be surrounded or even contradicted by various social, aesthetic, or analogistic companion meanings. This paper addresses a series of problems in the structure of spoken language discourse, including turn-taking and grounding. It views these processes as composed of fine-grained actions, which resemble speech acts both in resulting from a computational mechanism of planning and in having a rich relationship to the specific linguistic features which serve to indicate their presence. The resulting notion of Conversation Acts is more general than speech act theory, encompassing not only the traditional speech acts but turn-taking, grounding, and higher-level argumentation acts as well. Furthermore, the traditional speech acts in this scheme become fully joint actions, whose successful performance requires full listener participation. This paper presents a detailed analysis of spoken language dialogue. It shows the role of each class of conversation acts in discourse structure, and discusses how members of each class can be recognized in conversation. Conversation acts, it will be seen, better account for the success of conversation than speech act theory alone
Recommended from our members
Climatological Summary of Wind and Temperature Data for the Hanford Meteorology Monitoring Network
This document presents climatological summaries of wind and temperature data collected at the twenty-five monitoring stations operated by the Hanford Meteorology Monitoring Network. The climatological analyses presented here involve hourly averaged wind data collected over an 8-year period beginning in 1982 (fewer wind data are available for the several monitoring stations that began full-time operation after 1982) and hourly averaged air temperature data collected over 2-year period beginning in mid-1988. The tables and figures presented in this document illustrate the spatial and temporal variation of meteorological parameters across the Hanford Site and the surrounding areas. This information is useful for emergency response applications, routine meteorological forecasting, planning and scheduling operations, facility design, and environmental impact studies
The Photoreceptor Cell-Specific Nuclear Receptor Gene (PNR ) Accounts for Retinitis Pigmentosa in the Crypto-Jews from Portugal (Marranos), Survivors from the Spanish Inquisition
The last Crypto-Jews (Marranos) are the survivors of Spanish Jews who were persecuted in the late fifteenth century, escaped to Portugal and were forced to
convert to save their lives. Isolated groups still exist in mountainous areas such as Belmonte in the Beira-Baixa province of Portugal. We report here the genetic study of
a highly consanguineous endogamic population of Crypto-Jews of Belmonte affected with autosomal recessive retinitis pigmentosa (RP). A genome-wide search for homozygosity
allowed us to localize the disease gene to
chromosome 15q22-q24 (Zmax=2.95 at θ=0 at the
D15S131 locus). Interestingly, the photoreceptor cell-specific nuclear receptor (PNR) gene, the expression of which is restricted to the outer nuclear layer of retinal photoreceptor cells, was found to map to the YAC contig encompassing the disease locus. A search for mutations
allowed us to ascribe the RP of Crypto-Jews of Belmonte to a homozygous missense mutation in the PNR gene. Preliminary haplotype studies support the view that this
mutation is relatively ancient but probably occurred after the population settled in Belmonte
Relative frequencies of inherited retinal dystrophies and optic neuropathies in Southern France: assessment of 21-year data management
PURPOSE: Inherited retinal dystrophies (IRDs) and inherited optic neuropathies (IONs) are rare diseases defined by specific clinical and molecular features. The relative prevalence of these conditions was determined in Southern France.
METHODS: Patients recruited from a specialized outpatient clinic over a 21-year period underwent extensive clinical investigations and 107 genes were screened by polymerase chain reaction/sequencing.
RESULTS: There were 1957 IRD cases (1481 families) distributed in 70% of pigmentary retinopathy cases (56% non-syndromic, 14% syndromic), 20% maculopathies and 7% stationary conditions. Patients with retinitis pigmentosa were the most frequent (47%) followed by Usher syndrome (10.8%). Among non-syndromic pigmentary retinopathy patients, 84% had rod-cone dystrophy, 8% cone-rod dystrophy and 5% Leber congenital amaurosis. Macular dystrophies were encountered in 398 cases (30% had Stargardt disease and 11% had Best disease). There were 184 ION cases (127 families) distributed in 51% with dominant optic neuropathies, 33% with recessive/sporadic forms and 16% with Leber hereditary optic neuropathy. Positive molecular results were obtained in 417/609 families with IRDs (68.5%) and in 27/58 with IONs (46.5%). The sequencing of 5 genes (ABCA4, USH2A, MYO7A, RPGR and PRPH2) provided a positive molecular result in 48% of 417 families with IRDs. Except for autosomal retinitis pigmentosa, in which less than half the families had positive molecular results, about 75% of families with other forms of retinal conditions had a positive molecular diagnosis.
CONCLUSIONS: Although gene discovery considerably improved molecular diagnosis in many subgroups of IRDs and IONs, retinitis pigmentosa, accounting for almost half of IRDs, remains only partly molecularly defined
- …