25 research outputs found

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Structural stability analysis of models of dopamine synthesis and d1 receptor trafficking in RPT Cells using CRNT

    No full text
    Dopamine plays an important role in different physiological and metabolic functions, including the control of sodium excretion in the kidney. Studies have shown that there is a positive correlation between a defect in dopamine synthesis and/or dopamine receptor function, and a defect in renal sodium excretion - which may lead to the development of essential hypertension. Specific receptors for dopamine, such as the D1 receptor, have been identified in the various regions within the kidney. It is observed that errors regarding dopamine receptor-G protein coupling and changes in the signaling components may be responsible for the failure of dopamine to increase sodium excretion in hypertensive subjects. In this paper, two symbolic kinetic models of dopamine synthesis and one of dopamine D1 receptor trafficking are presented. The three models are chemical reaction networks constructed and analyzed using Chemical Reaction Network Theory (CRNT), a framework that provides different insights on the static properties of a chemical reaction network regarding the existence of steady states, their multiplicity, and structural stability. It is found that all three networks do not support multiple steady states. © 2019, Department of Science and Technology. All rights reserved

    Placental transfer and fetal metabolic effects of phenylephrine and ephedrine during spinal anesthesia for cesarean delivery

    No full text
    Background: Use of ephedrine in obstetric patients is associated with depression of fetal acid-base status. The authors hypothesized that the mechanism underlying this is transfer of ephedrine across the placenta and stimulation of metabolism in the fetus. Methods: A total of 104 women having elective Cesarean delivery under spinal anesthesia randomly received infusion of phenylephrine (100 g/ml) or ephedrine (8 mg/ml) titrated to maintain systolic blood pressure near baseline. At delivery, maternal arterial, umbilical arterial, and umbilical venous blood samples were taken for measurement of blood gases and plasma concentrations of phenylephrine, ephedrine, lactate, glucose, epinephrine, and norepinephrine. Results: In the ephedrine group, umbilical arterial and umbilical venous pH and base excess were lower, whereas umbilical arterial and umbilical venous plasma concentrations of lactate, glucose, epinephrine, and norepinephrine were greater. Umbilical arterial PCO 2 and umbilical venous PO 2 were greater in the ephedrine group. Placental transfer was greater for ephedrine (median umbilical venous/maternal arterial plasma concentration ratio 1.13 vs. 0.17). The umbilical arterial/umbilical venous plasma concentration ratio was greater for ephedrine (median 0.83 vs. 0.71). Conclusions: Ephedrine crosses the placenta to a greater extent and undergoes less early metabolism and/or redistribution in the fetus compared with phenylephrine. The associated increased fetal concentrations of lactate, glucose, and catecholamines support the hypothesis that depression of fetal pH and base excess with ephedrine is related to metabolic effects secondary to stimulation of fetal ␤-adrenergic receptors. Despite historical evidence suggesting uteroplacental blood flow may be better maintained with ephedrine, the overall effect o
    corecore