9 research outputs found

    Regulation of early cartilage destruction in inflammatory arthritis by death receptor 3

    Get PDF
    Objective: To investigate the role of death receptor 3 (DR-3) and its ligand tumor necrosis factor–like molecule 1A (TL1A) in the early stages of inflammatory arthritis. Methods: Antigen-induced arthritis (AIA) was generated in C57BL/6 mice deficient in the DR-3 gene (DR3−/−) and their DR3+/+ (wild-type) littermates by priming and intraarticular injection of methylated bovine serum albumin. The joints were sectioned and analyzed histochemically for damage to cartilage and expression of DR3, TL1A, Ly-6G (a marker for neutrophils), the gelatinase matrix metalloproteinase 9 (MMP-9), the aggrecanase ADAMTS-5, and the neutrophil chemoattractant CXCL1. In vitro production of MMP-9 was measured in cultures from fibroblasts, macrophages, and neutrophils following the addition of TL1A and other proinflammatory stimuli. Results: DR3 expression was up-regulated in the joints of wild-type mice following generation of AIA. DR3−/− mice were protected against cartilage damage compared with wild-type mice, even at early time points prior to the main accumulation of Teff cells in the joint. Early protection against AIA in vivo correlated with reduced levels of MMP-9. In vitro, neutrophils were major producers of MMP-9, while neutrophil numbers were reduced in the joints of DR3−/− mice. However, TL1A neither induced MMP-9 release nor affected the survival of neutrophils. Instead, reduced levels of CXCL1 were observed in the joints of DR3−/− mice. Conclusion: DR-3 drives early cartilage destruction in the AIA model of inflammatory arthritis through the release of CXCL1, maximizing neutrophil recruitment to the joint and leading to enhanced local production of cartilage-destroying enzymes

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Death Receptor 3 promotes chemokine directed leukocyte recruitment in acute resolving inflammation and is essential for pathological development of mesothelial fibrosis in chronic disease

    Get PDF
    Death receptor 3 (DR3; TNFRSF25) and its tumor necrosis factor–like ligand TL1A (TNFSF15) control several processes in inflammatory diseases through the expansion of effector T cells and the induction of proinflammatory cytokines from myeloid and innate lymphoid cells. Using wild-type (DR3+/+) and DR3-knockout (DR3−/−) mice, we show that the DR3/TL1A pathway triggers the release of multiple chemokines after acute peritoneal inflammation initiated by a single application of Staphylococcus epidermidis supernatant, correlating with the infiltration of multiple leukocyte subsets. In contrast, leukocyte infiltration was not DR3 dependent after viral challenge with murine cytomegalovirus. DR3 expression was recorded on connective tissue stroma, which provided DR3-dependent release of chemokine (C-C motif) ligand (CCL) 2, CCL7, CXCL1, and CXCL13. CCL3, CCL4, and CXCL10 production was also DR3 dependent, but quantitative RT-PCR showed that their derivation was not stromal. In vitro cultures identified resident macrophages as a DR3-dependent source of CCL3. Whether DR3 signaling could contribute to a related peritoneal pathology was then tested using multiple applications of S. epidermidis supernatant, the repetitive inflammatory episodes of which lead to peritoneal membrane thickening and collagen deposition. Unlike their DR3+/+ counterparts, DR3−/− mice did not develop fibrosis of the mesothelial layer. Thus, this work describes both a novel function and essential requirement for the DR3/TL1A pathway in acute, resolving, and chronic inflammation in the peritoneal cavity

    Collaboration practices, strategic capabilities and performance in Japanese and American product development: Do they differ?

    No full text
    Do New Product Development (NPD) collaboration practices differ across national subsets and, if so, does this make a difference to overall NPD performance? To address these questions, we studied the NPD programs of both Japanese and American firms and explored whether there are differences between the use of internal and external collaboration and strategic innovation practices. We further examined whether this had any significant effects on overall program performance. We found that the American firms we surveyed used collaboration practices significantly more often than the Japanese firms. However, when taking all factors into consideration, only strategic innovation capabilities were significantly linked with both overall performance and nationality. Thus, the use of collaboration without developing innovation capabilities is not enough for performance effects

    Mitochondrial physiology: Gnaiger Erich et al ― MitoEAGLE Task Group

    No full text
    corecore