382 research outputs found
Coexistance of different damage-associated myeloid populations in the hippocampus of Alzheimer's patients
Parenchymal microglia are the brain-resident immune cells capable of responding to damage. Though the role of microglial cells in the development/progression of AD is still unknown, a dysfunctional response has recently gained support since the identification of genetic risk factors related to microglial. In this sense, we reported an attenuated microglial activation in the hippocampus of AD patients, including a degenerative process of the microglial population in the dentate gyrus. On the other hand, it is also known that others myeloid components could also be involved in the neurodegenerative process. However, the implication of the diverse immune cells in the human pathology have not been determined yet. In this work, we analyzed the phenotypic profile displayed by damage-associated myeloid cells in the hippocampus of AD brains. For this purpose, immunohistochemistry and image analysis approaches have been carried out in non-demented controls and AD cases. Damage-associated myeloid cells from Braak II and Braak VI individuals were clustered around amyloid plaques and expressed Iba1, TMEM119, CD68, Trem2 and CD45high. A subset of these cells also expressed ferritin. However, and even though some Braak II individuals accumulated CD45-positive plaques, only AD patients exhibited parenchymal infiltration of CD163-positive cells, along with a decrease of the resident microglial marker TMEM119. Moreover, a negative correlation was observed between CD163 and TMEM119 intensities in Braak VI patients, showing a functional cooperation among these different myeloid populations. Taken together, these findings suggest the existence of different populations of amyloid-associated myeloid cells in the hippocampus during disease progression. The differential contribution of these myeloid populations to the pathogenesis remains to be elucidated. The dynamic of the myeloid molecular phenotypes associated to AD pathology needs to be considered for guarantee clinical success.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Microglial responses in the human Alzheimer’s disease frontal cortex
The continuing failure to develop an effective treatment for Alzheimer’s disease (AD) reveals the complexity for
this pathology. Increasing evidence indicates that neuroinflammation involving particularly microglial cells
contributes to AD pathogenesis. The actual view, based on the findings in APP based models, gives a
cytotoxic/proinflammatory role to activated microglia. However, we have previously reported a limited activation
and microglial degeneration in the hippocampus of AD patients in contrast with that observed in amyloidogenic
models. Here, we evaluated the microglial response in a different region of AD brains, the frontal cortex. Post
mortem tissue from controls (Braak 0-II) and AD patients (Braak V-VI) including familial cases, were obtained
from Spain Neurological Tissue Banks. Cellular (immunohistochemistry and image analysis) and molecular
(qPCR and western blots) approaches were performed. Frontal cortex of AD patients (Braak V-VI) showed
strong microglial activation similar to that observed in amyloidogenic mice. These strongly activated microglial
cells, predominantly located surrounding amyloid plaques, could drive the AD pathology and, in consequence,
could be implicated in the pathology progression. Furthermore, different microglial responses were observed
between sporadic and familial AD cases. These findings in the frontal cortex were highly in contrast to the
attenuated activation and degenerative morphology displayed by microglial cells in the hippocampus of AD
patients. Regional differences in the microglial response suggest different functional states of microglial cells in a
region-specific manner. All together, these data provide a better understanding of the immunological
mechanisms underlying AD progression and uncover new potential therapeutic targets to fight this devastating
neurodegenerative disease.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.
Supported by PI18/01557 (AG) and PI18/01556 (JV) grants from ISCiii of Spain co-financed by FEDER funds
from European Unio
Decoding damage-associated microglia in post mortem hippocampus of Alzheimer’s disease patients
The relationship between Alzheimer’s disease (AD) and neuroinflammation has become stronger since the
identification of several genetic risk factors related to microglial function. Though the role of microglial cells in the development/progression of AD is still unknown, a dysfunctional response has recently gained support. In this sense, we have reported an attenuated microglial activation associated to amyloid plaques in the hippocampus of AD patients, including a prominent degenerative process of the microglial population in the dentate gyrus, which was in contrast to the exacerbated microglial response in amyloidogenic models. This microglial degeneration could compromise their normal role of surveying the brain environment and respond to the damage. Here, we have further analyzed the phenotypic profile displayed by the damage-associated microglial cells by immunostaining and qPCR in the hippocampus of postmortem samples of AD patients (Braak V-VI) and control cases (Braak 0-II). Damage-associated microglial cells of Braak V-VI individuals were clustered around amyloid plaques and expressed Iba1, CD68, Trem2, TMEM119 and CD45high. A subset of these cells also expressed ferritin. On the contrary, these microglia down-regulated homeostatic markers, such as Cx3cr1 and P2ry12. The homeostatic and ramified microglial cells of non-demented Braak II cases were characterized by Iba1, CX3CR1, P2ry12, TMEM119 and CD45low expression. The dynamic of the microglial molecular phenotypes associated to AD pathology needs to be considered for better understand the disease complexity and, therefore, guarantee clinical success. Correcting dysregulated brain inflammatory responses might be a promising avenue to prevent/slow cognitive decline.Universidad de Málaga. Campus de excelencia Internacional-Andalucía Tech. Supported by PI18/01557 (AG) and PI18/01556 (JV) grants from ISCiii of Spain co-financed by FEDER funds from European Union
Insights into the speleogenesis of Ejulve cave (Iberian Range, NE Spain): quaternary hydrothermal karstification?
We provide first insights into the speleogenesis of Ejulve cave (Teruel province, Iberian Range, NE Spain) by studying cave morphologies and cave deposits, combined with regional geomorphological and hydrothermal observations. Three main hydrogeomorphic evolutionary stages can be distinguised to explain the origin and evolution of the Ejulve endokarstic system. Cave pattern and cave solutional features (calcite vein fillings, tubes with rising ceiling cupolas, pendants and cusps, spongework and micro-corrosion features) suggest that the cave generated in a phreatic environment by ascending water. Cave morphologies and regional hydrothermal springs in this region suggest, but not prove, the involvement of thermal waters and related convection and condensation-corrosion mechanisms in the origin of the cave. Subsequently, the cave underwent a change to epigenic conditions driven by denudation, as a result of regional uplift. Once the karstic system was exhumated, carbonate speleothems formed in a vadose environment. Mineralogical, petrographic, isotopic and chronological (U-series dating) analyses of carbonate speleothems (i.e. stalagmites, flowstones, botryoids, spars, acicular crystals and farmed carbonate) are provided. Calcite, high-Mg calcite and aragonite are the most common minerals, whereas columnar, dendritic, micrite, mosaics and fans are the main fabrics. Mean delta O-18 values of - 7.3 parts per thousand and delta C-13 values of - 9.1 parts per thousand indicate carbonate precipitation from meteoric waters without a hydrothermal origin. Carbonate deposits formed at least since 650 ka BP. Our study suggests that hydrothermal fluid flow may explain, although the evidences are not fully conclusive, the speleogenesis of this cave
Abrupt climate changes during Termination III in Southern Europe
The Late Quaternary glacial-interglacial transitions represent the highest amplitude climate changes over the last million years. Unraveling the sequence of events and feedbacks at Termination III (T-III), including potential abrupt climate reversals similar to those of the last Termination, has been particularly challenging due to the scarcity of well-dated records worldwide. Here, we present speleothem data from southern Europe covering the interval from 262.7 to 217.9 kyBP, including the transition from marine isotope stage (MIS) 8 to MIS 7e. High-resolution delta C-13, delta O-18, and Mg/Ca profiles reveal major millennial-scale changes in aridity manifested in changing water availability and vegetation productivity. uranium-thorium dates provide a solid chronology for two millennial-scale events (S8.1 and S8.2) which, compared with the last two terminations, has some common features with Heinrich 1 and Heinrich 2 in Termination I (T-I)
Understanding microglial responses in the frontal cortex of alzheimer´s disease patients
Microglial cells, the immune cells of the brain, and the neuroinflammatory process associated, have been
postulated as a critical factor in AD pathogenesis, since the identification of genetic risk factors related to
microglial function. However, the microglial role in the development/progression of AD has not been
determined yet. In this sense, we have previously reported a limited activation and microglial degeneration in
the hippocampus of AD patients in contrast to the proinflammatory view based on findings in amyloidogenic
models. Here, we have further analyzed the functional/phenotypic profile displayed by microglial cells in other
vulnerable brain region of AD patients, the frontal cortex. Immunohistochemistry and image analysis approaches were performed in the frontal cortex of post mortem samples from controls (Braak 0-II) and AD patients (Braak V-VI) including familial cases.
Microglia of Braak V-VI individuals were observed forming clusters and showed, both plaque
(Iba1+/TMEM119+/P2ry12-/CD45high/Trem2+) and inter-plaque (Iba1+/ TMEM119+/P2ry12-/CD45high/Trem2-)
microglial activation, similar that observed in amyloidogenic mice. By contrast, homeostatic and ramified
microglial cells of non-demented Braak II cases presented Iba1+/P2ry12+/TMEM119+/CD45low/Trem2- profile.
Furthermore, different microglial responses were observed between sporadic and familial AD cases.
These different microglial phenotypes associated with AD pathology show the heterogeneity and complexity of
the microglial phenotypes and suggest different functional states of these glial cells in a region-specific
manner. These data need to be considered for better understand the immunological mechanisms underlying
AD progression. Modulating brain inflammatory responses might be a promising avenue to prevent cognitive
dysfunction in AD patients. ISCiii:PI18/01557(AG)-PI18/01556(JV);Junta Andalucia:UMA18-FEDERJA211(AG). All
cofinanced by FEDER funds (European-Union).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Microglial response differences between amyloidogenic transgenic models and Alzheimer’s disease patients
Aims: The continuing failure to develop an effective treatment for Alzheimer’s disease (AD) reveals the complexity for AD pathology. Increasing evidence indicates that neuroinflammation involving particularly microglial cells contributes to disease pathogenesis. Here we analyze the differences in the microglial response between APP/PS1 model and human brains.
Methods: RT-PCR, western blots, and immunostaining were performed in the hippocampus of human post mortem samples (from Braak II to Braak V-VI) and APP751SL/PS1M146L mice. In vitro studies to check the effect of S1 fractions on microglial cells were assayed.
Results: In APP based models the high Abeta accumulation triggers a prominent microglial response. On the contrary, the microglial response detected in human samples is, at least, partial or really mild. This patent difference could simple reflect the lower and probably slower Abeta production observed in human hippocampal samples, in comparison with models or could reflect the consequence of a chronic long-standing microglial activation. However, beside this differential response, we also observed a prominent microglial degenerative process in Braak V-VI samples that, indeed, could compromise their normal role of surveying the brain environment and respond to the damage. This microglial degeneration, particularly relevant at the dentate gyrus of the hippocampal formation, might be mediated by the accumulation of toxic soluble phospho-tau species.
Conclusions: These differences need to be considered when delineating animal models that better integrate the complexity of AD pathology and, therefore, guarantee clinical translation. Correcting dysregulated brain inflammatory responses might be a promising avenue to restore cognitive function.
Supported by grants FIS PI15/00796 and FIS PI15/00957 co-financed by FEDER funds from European Union, and by Junta de Andalucia Proyecto de Excelencia CTS385 2035.Financiado por FIS PI15/00796 y FIS PI15/0095, cofinanciado por los fondos FEDER de la Unión Europea, y por Junta de Andalucia Proyecto de Excelencia CTS385 2035.
Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Dissecting the microglial response in transgenic models of amyloidogenesis and tauopathy
Amyloid-beta (Abeta) peptide deposits and hyperphosphorylated tau protein (phospho-tau) accumulate in
Alzheimer’s disease (AD) brains. These abnormal protein aggregates leads to glial activation, synaptic
dysfunction, neuronal loss and cognitive decline. While microglial response has mostly been analyzed in relation to Abeta accumulation, little is still known about inflammatory processes associated with tau pathology. Microglial reactivity and defective glial responses have been involved in these proteinopathies. Our aim is to clarify the effects of Abeta and tau separately, in order to improve the comprehension of their differential contribution to neuroinflammation and neurodegeneration. We compared the progression of these processes in an amyloidogenic AD model (APPSL/PS1M146L) and two different models of tauopathy (ThyTau22 and hP301S) from 2 to 18 months of age. Accumulation of aggregated proteins was assessed using specific anti- Abeta and phospho-tau antibodies. Inflammatory response was studied using a battery of microglial markers (Iba1, CD45, CD68, Trem2 and Gal-3). In the hippocampus of these models, Tau and Abeta pathologies initiated as early as 2 months of age and increased progressively with aging. Neuritic plaques induced a strong microglial activation associated to plaques in APP/PS1 mice. Interestingly, inflammatory markers and microglial reactivity were barely increased in the hippocampus of ThyTau mice in contrast to not only APP/PS1, but also to P301S mice, which displayed a prominent microglial response. Deciphering the specific effects of Abeta, tau and their different toxic species, would indeed enable the development of novel therapeutic strategies and drugs targeting neuroinflammatory pathways related to these proteinopathies.Universidad de Málaga. Campus de excelencia Andalucía-Tech. Supported by PI18/01557 (AG) and PI18/01556 (JV) grants from ISCiii of Spain co-financed by FEDER funds from European Union, and by grant PPIT.UMA.B1.2017/26 (RS-V)
Tau pathology and astroglial reactivity: a comparative study of two mouse models of tauopathy
Objectives: Astrocytes are becoming crucial players in the context of neurodegenerative proteinopathies, such as Alzheimer’s disease (AD). Astroglial response has been mainly analyzed in amyloidogenic scenarios, but less is known about their involvement in tauopathies. Here, we aimed to analyze astroglial reactivity to hyperphosphorylated-tau (ptau) in the hippocampus of two transgenic mouse models of tauopathy, ThyTau22 and P301S (2- to 12/18-months).
Methods: Proteinopathy was assessed by western-blotting and immunohistochemistry (AT8). Neuroinflammation was analyzed by qPCR and bright-field immunohistochemistry, glial-ptau relationship by confocal and transmission electron microscopy.
Results: P301S mice exhibited an intense reactive astrogliosis, increasing progressively with aging accordingly to a strong ptau accumulation, whereas ThyTau22 model showed slighter astrocytosis related to lesser proteinopathy. P301S astrogliosis correlated with an acute DAM-like microglial activation, not observed in ThyTau22 hippocampus. In both models, reactive astrocytes contained ptau, especially around vessels.
Conclusions: Our results support that astrocytes respond to ptau in the absence of Abeta. This reactivity correlates with tau pathology and depends on microglial DAM-like activation. In addition, reactive astrocytes may play a role in the elimination/spreading of ptau species through the brain. Deciphering the mechanisms underlying these processes might allow the development of strategies to slow down the progression of AD and other tauopathies.Supported by Instituto de Salud Carlos III of Spain, co-financed by FEDER funds from European Union, through grants PI18/01557 (to AG),PI18/01556 (to JV), and Junta de Andalucia through Consejería de Economía y Conocimiento grants UMA18-FEDERJA-211 (AG), P18-RT-2233 (AG) and US-1262734 (JV) co-financed by Programa Operativo FEDER 2014-2020.
Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
Disentangling the contribution of tau and abeta pathologies in transgenic models of Alzheimer's disease
AIMS: Amyloid-beta (Abeta) deposits and intraneuronal hyperphosphorylated tau are major pathological hallmarks of Alzheimer’s disease (AD). The coexistence of these aggregates in AD brains leads to synaptic dysfunction, neuronal loss and cognitive decline. Failures in protein homeostasis, along with defective glial responses, have been identified as pathological mechanisms linked to this disorder. Thus, our main objective is to better understand the differential impact of Abeta- and tau-aggregates to these processes in the hippocampus of AD models.
METHODS: We analyzed APP- (APPSL/PS1M146L) and Tau- (ThyTau22 and hP301S) based models from 2 to 18 months of age. Tau and Abeta pathologies were assessed by western blotting and immunohistochemistry. Confocal microscopy was used to study microglia/aggregates relationship. Levels of synaptic proteins, autophagy and inflammatory markers were determined by quantitative PCR, WB and immunohistochemistry.
RESULTS: Tau and Abeta pathologies initiated as early as 2 months of age and increased progressively with aging. Even though only APP/PS1 hippocampus showed dystrophic neurites positive to proteostatic and presynaptic markers, their protein levels were altered in both types of models from 6-9 months compared to age-matched WT mice. Inflammatory markers and microglial reactivity were barely increased in the hippocampus of ThyTau mice in contrast to P301S and APP/PS1 mice which displayed a prominent microglial response.
CONCLUSIONS: Clarifying the effects of Abeta and tau separately would indeed enable the development of novel therapeutic strategies and drugs targeting pathways related to these proteinopathies.
Supported by grants FIS PI15/00796 and PI15/00957 co-financed by FEDER funds from European Union, by Junta de Andalucia Proyecto de Excelencia CTS385 2035 and by grant PPIT.UMA.B1/2017.26Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
- …