27 research outputs found

    Regiospecific analysis of Mono and Diglycerides in Glycerolysis products by GC x GC TOF-MS.

    Get PDF
    Comprehensive bidimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOF-MS) was used for the characterization of regiospecific mono- and diglycerides (MG-DG) content in the glycerolysis products derived from five different lipids included lard (LA), sun flower seed oil (SF), corn oil (CO), butter (BU), and palm oil (PA). The combination of fast and high temperature non-orthogonal column set namely DB17ht (6 m × 0.10 mm × 0.10 μm) as the primary column and SLB-5 ms (60 cm × 0.10 mm × 0.10 μm) as the secondary column was applied in this work. System configuration involved high oven ramp temperature to obtain precise mass spectral identification and highest effluent’s resolution. 3-Monopalmitoyl-sn-glycerol (MG 3-C16) was the highest concentration in LA, BU and PA while monostearoyl-sn-glycerol (MG C18) in CO and 1,3-dilinoleol-rac-glycerol (DG C18:2c) in SF. Principal component analysis accounted 82% of variance using combination of PC1 and PC2. The presence of monostearoyl-sn-glycerol (MG C18), 3-Monopalmitoyl-sn-glycerol (MG 3-C16), 1,3-dilinoleol-rac-glycerol (DG C18:2c), 1,3-dipalmitoyl-glycerol (DG 1,3-C16), and 1,3-dielaidin (DG C18:1t) caused differentiation of the samples tested

    Brucella beta 1,2 cyclic glucan is an activator of human and mouse dendritic cells

    Get PDF
    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella beta 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella beta 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella beta 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies

    Choice of the initial antiretroviral treatment for HIV-positive individuals in the era of integrase inhibitors

    Get PDF
    BACKGROUND: We aimed to describe the most frequently prescribed initial antiretroviral therapy (ART) regimens in recent years in HIV-positive persons in the Cohort of the Spanish HIV/AIDS Research Network (CoRIS) and to investigate factors associated with the choice of each regimen. METHODS: We analyzed initial ART regimens prescribed in adults participating in CoRIS from 2014 to 2017. Only regimens prescribed in >5% of patients were considered. We used multivariable multinomial regression to estimate Relative Risk Ratios (RRRs) for the association between sociodemographic and clinical characteristics and the choice of the initial regimen. RESULTS: Among 2874 participants, abacavir(ABC)/lamivudine(3TC)/dolutegavir(DTG) was the most frequently prescribed regimen (32.1%), followed by tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC)/elvitegravir(EVG)/cobicistat(COBI) (14.9%), TDF/FTC/rilpivirine (RPV) (14.0%), tenofovir alafenamide (TAF)/FTC/EVG/COBI (13.7%), TDF/FTC+DTG (10.0%), TDF/FTC+darunavir/ritonavir or darunavir/cobicistat (bDRV) (9.8%) and TDF/FTC+raltegravir (RAL) (5.6%). Compared with ABC/3TC/DTG, starting TDF/FTC/RPV was less likely in patients with CD4100.000 copies/mL. TDF/FTC+DTG was more frequent in those with CD4100.000 copies/mL. TDF/FTC+RAL and TDF/FTC+bDRV were also more frequent among patients with CD4<200 cells//muL and with transmission categories other than men who have sex with men. Compared with ABC/3TC/DTG, the prescription of other initial ART regimens decreased from 2014-2015 to 2016-2017 with the exception of TDF/FTC+DTG. Differences in the choice of the initial ART regimen were observed by hospitals' location. CONCLUSIONS: The choice of initial ART regimens is consistent with Spanish guidelines' recommendations, but is also clearly influenced by physician's perception based on patient's clinical and sociodemographic variables and by the prescribing hospital location

    The DUNE far detector vertical drift technology. Technical design report

    Get PDF
    DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Deciphering the Acylation Pattern of Yersinia enterocolitica Lipid A

    Get PDF
    <div><p>Pathogenic bacteria may modify their surface to evade the host innate immune response. <em>Yersinia enterocolitica</em> modulates its lipopolysaccharide (LPS) lipid A structure, and the key regulatory signal is temperature. At 21°C, lipid A is hexa-acylated and may be modified with aminoarabinose or palmitate. At 37°C, <em>Y. enterocolitica</em> expresses a tetra-acylated lipid A consistent with the 3′-O-deacylation of the molecule. In this work, by combining genetic and mass spectrometric analysis, we establish that <em>Y. enterocolitica</em> encodes a lipid A deacylase, LpxR, responsible for the lipid A structure observed at 37°C. Western blot analyses indicate that LpxR exhibits latency at 21°C, deacylation of lipid A is not observed despite the expression of LpxR in the membrane. Aminoarabinose-modified lipid A is involved in the latency. 3-D modelling, docking and site-directed mutagenesis experiments showed that LpxR D31 reduces the active site cavity volume so that aminoarabinose containing Kdo<sub>2</sub>-lipid A cannot be accommodated and, therefore, not deacylated. Our data revealed that the expression of <em>lpxR</em> is negatively controlled by RovA and PhoPQ which are necessary for the lipid A modification with aminoarabinose. Next, we investigated the role of lipid A structural plasticity conferred by LpxR on the expression/function of <em>Y. enterocolitica</em> virulence factors. We present evidence that motility and invasion of eukaryotic cells were reduced in the <em>lpxR</em> mutant grown at 21°C. Mechanistically, our data revealed that the expressions of <em>flhDC</em> and <em>rovA</em>, regulators controlling the flagellar regulon and invasin respectively, were down-regulated in the mutant. In contrast, the levels of the virulence plasmid (pYV)-encoded virulence factors Yops and YadA were not affected in the <em>lpxR</em> mutant. Finally, we establish that the low inflammatory response associated to <em>Y. enterocolitica</em> infections is the sum of the anti-inflammatory action exerted by pYV-encoded YopP and the reduced activation of the LPS receptor by a LpxR-dependent deacylated LPS.</p> </div

    Brucella beta 1,2 cyclic glucan is an activator of human and mouse dendritic cells

    No full text
    Bacterial cyclic glucans are glucose polymers that concentrate within the periplasm of alpha-proteobacteria. These molecules are necessary to maintain the homeostasis of the cell envelope by contributing to the osmolarity of Gram negative bacteria. Here, we demonstrate that Brucella beta 1,2 cyclic glucans are potent activators of human and mouse dendritic cells. Dendritic cells activation by Brucella beta 1,2 cyclic glucans requires TLR4, MyD88 and TRIF, but not CD14. The Brucella cyclic glucans showed neither toxicity nor immunogenicity compared to LPS and triggered antigen-specific CD8(+) T cell responses in vivo. These cyclic glucans also enhanced antigen-specific CD4(+) and CD8(+) T cell responses including cross-presentation by different human DC subsets. Brucella beta 1,2 cyclic glucans increased the memory CD4(+) T cell responses of blood mononuclear cells exposed to recombinant fusion proteins composed of anti-CD40 antibody and antigens from both hepatitis C virus and Mycobacterium tuberculosis. Thus cyclic glucans represent a new class of adjuvants, which might contribute to the development of effective antimicrobial therapies

    Role of Bacterial Surface Structures on the Interaction of <i>Klebsiella pneumoniae</i> with Phagocytes

    Get PDF
    Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis
    corecore