41,302 research outputs found

    Cylindrical radiator with internal heat rejection

    Get PDF
    Size and temperature approximation analysis of cylindrical radiator with internal heat rejection use for SNAP-

    Advanced nickel-hydrogen cell configuration study

    Get PDF
    Three nickel hydrogen battery designs, individual pressure vessel (IPV), common pressure vessel (CPV), and a bipolar battery module were studied. Weight, system complexity and cost were compared for a satellite operating in a 6 hour, 5600 nautical mile orbit. The required energy storage is 52 kWh. A 25% improvement in specific energy is observed by employing a bipolar battery versus a battery comprised of hundreds of IPV's. Further weight benefits are realized by the development of light weight technologies in the bipolar design

    Cylindrical radiator analysis with interior insulated

    Get PDF
    Size and weight evaluation of insulated cylindrical radiators used in SNAP-8 heat rejection syste

    Weight-area trade-off study for a flat SNAP-8 radiator

    Get PDF
    Weight-area tradeoff evaluation of radiator used in SNAP-

    Evaluation of HRL condensing temperature controls

    Get PDF
    Sensitivities of condenser, radiator, and pump bypass temperature controls to control flo

    Evolution of Vacuum Bubbles Embeded in Inhomogeneous Spacetimes

    Get PDF
    We study the propagation of bubbles of new vacuum in a radially inhomogeneous background filled with dust or radiation, and including a cosmological constant, as a first step in the analysis of the influence of inhomogeneities in the evolution of an inflating region. We also compare the cases with dust and radiation backgrounds and show that the evolution of the bubble in radiation environments is notably different from that in the corresponding dust cases, both for homogeneous and inhomogeneous ambients, leading to appreciable differences in the evolution of the proper radius of the bubble.Comment: 18 pages, 15 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (new version with a few cosmetic changes w.r.t. the published one

    SNAP-8 third loop optimization

    Get PDF
    Eutectic sodium potassium and OS-124 considered as coolant fluids for SNAP-8 third loop - optimum loop operating parameter

    Structure of Compact Stars in R-squared Palatini Gravity

    Get PDF
    We analyse configurations of compact stars in the so-called R-squared gravity in the Palatini formalism. Using a realistic equation of state we show that the mass-radius configurations are lighter than their counterparts in General Relativity. We also obtain the internal profiles, which run in strong correlation with the derivatives of the equation of state, leading to regions where the mass parameter decreases with the radial coordinate in a counter-intuitive way. In order to analyse such correlation, we introduce a parametrisation of the equation of state given by multiple polytropes, which allows us to explicitly control its derivatives. We show that, even in a limiting case where hard phase transitions in matter are allowed, the internal profile of the mass parameter still presents strange features and the calculated M-R configurations also yield NSs lighter than those obtained in General Relativity.Comment: 9 pages, 5 figures. Accepted for publication in General Relativity and Gravitatio

    Dual Formulation of the Lie Algebra S-expansion Procedure

    Full text link
    The expansion of a Lie algebra entails finding a new, bigger algebra G, through a series of well-defined steps, from an original Lie algebra g. One incarnation of the method, the so-called S-expansion, involves the use of a finite abelian semigroup S to accomplish this task. In this paper we put forward a dual formulation of the S-expansion method which is based on the dual picture of a Lie algebra given by the Maurer-Cartan forms. The dual version of the method is useful in finding a generalization to the case of a gauge free differential algebra, which in turn is relevant for physical applications in, e.g., Supergravity. It also sheds new light on the puzzling relation between two Chern-Simons Lagrangians for gravity in 2+1 dimensions, namely the Einstein-Hilbert Lagrangian and the one for the so-called "exotic gravity".Comment: 12 pages, no figure

    Hierarchy of Floquet gaps and edge states for driven honeycomb lattices

    Get PDF
    Electromagnetic driving in a honeycomb lattice can induce gaps and topological edge states with a structure of increasing complexity as the frequency of the driving lowers. While the high frequency case is the most simple to analyze we focus on the multiple photon processes allowed in the low frequency regime to unveil the hierarchy of Floquet edge-states. In the case of low intensities an analytical approach allows us to derive effective Hamiltonians and address the topological character of each gap in a constructive manner. At high intensities we obtain the net number of edge states, given by the winding number, with a numerical calculation of the Chern numbers of each Floquet band. Using these methods, we find a hierarchy that resembles that of a Russian nesting doll. This hierarchy classifies the gaps and the associated edge states in different orders according to the electron-photon coupling strength. For large driving intensities, we rely on the numerical calculation of the winding number, illustrated in a map of topological phase transitions. The hierarchy unveiled with the low energy effective Hamiltonians, alongside with the map of topological phase transitions discloses the complexity of the Floquet band structure in the low frequency regime. The proposed method for obtaining the effective Hamiltonian can be easily adapted to other Dirac Hamiltonians of two dimensional materials and even the surface of a 3D topological insulator.Comment: Phys. Rev. A 91, 04362
    corecore