14,406 research outputs found
Deep learning from crowds
Over the last few years, deep learning has revolutionized the field of
machine learning by dramatically improving the state-of-the-art in various
domains. However, as the size of supervised artificial neural networks grows,
typically so does the need for larger labeled datasets. Recently, crowdsourcing
has established itself as an efficient and cost-effective solution for labeling
large sets of data in a scalable manner, but it often requires aggregating
labels from multiple noisy contributors with different levels of expertise. In
this paper, we address the problem of learning deep neural networks from
crowds. We begin by describing an EM algorithm for jointly learning the
parameters of the network and the reliabilities of the annotators. Then, a
novel general-purpose crowd layer is proposed, which allows us to train deep
neural networks end-to-end, directly from the noisy labels of multiple
annotators, using only backpropagation. We empirically show that the proposed
approach is able to internally capture the reliability and biases of different
annotators and achieve new state-of-the-art results for various crowdsourced
datasets across different settings, namely classification, regression and
sequence labeling.Comment: 10 pages, The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI), 201
Defocusing digital particle image velocimetry and the three-dimensional characterization of two-phase flows
Defocusing digital particle image velocimetry (DDPIV) is the natural extension of planar PIV techniques to the third spatial dimension. In this paper we give details of the defocusing optical concept by which scalar and vector information can be retrieved within large volumes. The optical model and computational procedures are presented with the specific purpose of mapping the number density, the size distribution, the associated local void fraction and the velocity of bubbles or particles in two-phase flows. Every particle or bubble is characterized in terms of size and of spatial coordinates, used to compute a true three-component velocity field by spatial three-dimensional cross-correlation. The spatial resolution and uncertainty limits are established through numerical simulations. The performance of the DDPIV technique is established in terms of number density and void fraction. Finally, the velocity evaluation methodology, using the spatial cross-correlation technique, is described and discussed in terms of velocity accuracy
A method for three-dimensional particle sizing in two-phase flows
A method is devised for true three-dimensional (3D) particle sizing in two-phase systems. Based on a ray-optics approximation of the Mie scattering theory for spherical particles, and under given assumptions, the principle is applicable to intensity data from scatterers within arbitrary interrogation volumes. It requires knowledge of the particle 3D location and intensity, and of the spatial distribution of the incident light intensity throughout the measurement volume. The new methodology is particularly suited for Lagrangian measurements: we demonstrate its use with the defocusing digital particle image velocimetry technique, a 3D measurement technique that provides the location, intensity and velocity of particles in large volume domains. We provide a method to characterize the volumetric distribution of the incident illumination and we assess experimentally the size measurement uncertainty
Heteroscedastic Gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data
Accurately modeling traffic speeds is a fundamental part of efficient
intelligent transportation systems. Nowadays, with the widespread deployment of
GPS-enabled devices, it has become possible to crowdsource the collection of
speed information to road users (e.g. through mobile applications or dedicated
in-vehicle devices). Despite its rather wide spatial coverage, crowdsourced
speed data also brings very important challenges, such as the highly variable
measurement noise in the data due to a variety of driving behaviors and sample
sizes. When not properly accounted for, this noise can severely compromise any
application that relies on accurate traffic data. In this article, we propose
the use of heteroscedastic Gaussian processes (HGP) to model the time-varying
uncertainty in large-scale crowdsourced traffic data. Furthermore, we develop a
HGP conditioned on sample size and traffic regime (SRC-HGP), which makes use of
sample size information (probe vehicles per minute) as well as previous
observed speeds, in order to more accurately model the uncertainty in observed
speeds. Using 6 months of crowdsourced traffic data from Copenhagen, we
empirically show that the proposed heteroscedastic models produce significantly
better predictive distributions when compared to current state-of-the-art
methods for both speed imputation and short-term forecasting tasks.Comment: 22 pages, Transportation Research Part C: Emerging Technologies
(Elsevier
Generating descriptive text from functional brain images
Recent work has shown that it is possible to take brain images of a subject acquired while they saw a scene and reconstruct an approximation of that scene from the images. Here we show that it is also possible to generate _text_ from brain images. We began with images collected as participants read names of objects (e.g., ``Apartment'). Without accessing information about the object viewed for an individual image, we were able to generate from it a collection of semantically pertinent words (e.g., "door," "window"). Across images, the sets of words generated overlapped consistently with those contained in articles about the relevant concepts from the online encyclopedia Wikipedia. The technique described, if developed further, could offer an important new tool in building human computer interfaces for use in clinical settings
Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation
Traffic speed data imputation is a fundamental challenge for data-driven
transport analysis. In recent years, with the ubiquity of GPS-enabled devices
and the widespread use of crowdsourcing alternatives for the collection of
traffic data, transportation professionals increasingly look to such
user-generated data for many analysis, planning, and decision support
applications. However, due to the mechanics of the data collection process,
crowdsourced traffic data such as probe-vehicle data is highly prone to missing
observations, making accurate imputation crucial for the success of any
application that makes use of that type of data. In this article, we propose
the use of multi-output Gaussian processes (GPs) to model the complex spatial
and temporal patterns in crowdsourced traffic data. While the Bayesian
nonparametric formalism of GPs allows us to model observation uncertainty, the
multi-output extension based on convolution processes effectively enables us to
capture complex spatial dependencies between nearby road segments. Using 6
months of crowdsourced traffic speed data or "probe vehicle data" for several
locations in Copenhagen, the proposed approach is empirically shown to
significantly outperform popular state-of-the-art imputation methods.Comment: 10 pages, IEEE Transactions on Intelligent Transportation Systems,
201
Evidence for a 304-day Orbital Period for GX 1+4
In this paper we report strong evidence for a ~304-day periodicity in the
spin history of the accretion-powered pulsar GX 1+4 that is very likely to be a
signature of the orbital period of the system. Using BATSE public-domain data,
we show a highly-significant periodic modulation of the pulsar frequency from
1991 to date which is in excellent agreement with the ephemeris proposed by
Cutler, Dennis & Dolan in 1986, which were based on a few events of enhanced
spin-up that occurred during the pulsar's spin-up era in the 1970s. Our results
indicate that the orbital period of GX 1+4 is 303.8+-1.1 days, making it by far
the widest low-mass X-ray binary system known. A likely scenario for this
system is an elliptical orbit in which the neutron star decreases its spin-down
rate (or even exhibits a momentary spin-up behavior) at periastron passages due
to the higher torque exerted by the accretion disk onto the magnetosphere of
the neutron star.Comment: 5 pages, 2 figures, 1 single PS file, to appear in "Proceedings of
the 5th Compton Symposium on Gamma-Ray Astrophysics", AI
- …