36 research outputs found

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon

    Full text link
    We present a systematic study of generalized transverse-momentum dependent parton distributions (GTMDs). By taking specific limits or projections, these GTMDs yield various transverse-momentum dependent and generalized parton distributions, thus providing a unified framework to simultaneously model different observables. We present such simultaneous modeling by considering a light-cone wave function overlap representation of the GTMDs. We construct the different quark-quark correlation functions from the 3-quark Fock components within both the light-front constituent quark model as well as within the chiral quark-soliton model. We provide a comparison with available data and make predictions for different observables.Comment: version to appear in JHE

    Measurement of GEp/GMp in ep -> ep to Q2 = 5.6 GeV2

    Full text link
    The ratio of the electric and magnetic form factors of the proton, GEp/GMp, was measured at the Thomas Jefferson National Accelerator Facility (JLab) using the recoil polarization technique. The ratio of the form factors is directly proportional to the ratio of the transverse to longitudinal components of the polarization of the recoil proton in the elastic e⃗p→ep⃗\vec ep \to e\vec p reaction. The new data presented in this article span the range 3.5 < Q2 < 5.6 GeV2 and are well described by a linear Q2 fit. Also, the ratio QF2p/F1p reaches a constant value above Q2=2 GeV2.Comment: 6 pages, 4 figures Added two names to the main author lis

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Polarization Transfer in the ^4He(\vec e,e'\vec p)^3H Reaction up to Q^2 = 2.6 (GeV/c)^2

    Full text link
    We have measured the proton recoil polarization in the ^4He(\vec e,e'\vec p)^3H reaction at Q^2 = 0.5, 1.0, 1.6, and 2.6 (GeV/c)^2. The measured ratio of polarization transfer coefficients differs from a fully relativistic calculation, favoring the inclusion of a predicted medium modification of the proton form factors based on a quark-meson coupling model. In contrast, the measured induced polarizations agree reasonably well with the fully relativistic calculation indicating that the treatment of final-state interactions is under control.Comment: 5 pages, 3 figures, uses revtex.sty, submitted to Physical Review Letter

    Measurement of the Generalized Polarizabilities of the Proton in Virtual Scattering at Q2=0.92 and 1.76 GeV2: I. Low Energy Expansion Analysis

    Full text link
    Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility at low Center-of-Mass energies, below pion threshold. Following the Low Energy Theorem for the ep→epγ ep \to ep \gamma process, we obtain values for the two structure functions Pll-Ptt/epsilon and Plt at four-momentum transfer squared Q2=0.92 and 1.76 GeV2.Comment: 4 pages, 2 figures, to be submitted to PRL. Figs 1 and 2, lettering enlarge

    H-2(e,e ' p)n reaction at high recoil momenta

    No full text
    The 2H(e,e(')p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility near the top of the quasielastic peak (x(Bj)=0.964) at a four-momentum transfer squared, Q(2)=0.665 (GeV/c) (2) (omega=0.368 GeV, W=2.057 GeV), and for recoil momenta up to 550 MeV/c. The measured cross section deviates by 1-2sigma from a state-of-the-art calculation at low recoil momenta. At high recoil momenta the cross section is well described by the same calculation; however, in this region, final-state interactions and interaction currents are predicted to be large, and alternative choices of nucleon-nucleon potential and nucleon current operator may result in significant spread in the calculations
    corecore