5,612 research outputs found
Growing Perfect Decagonal Quasicrystals by Local Rules
A local growth algorithm for a decagonal quasicrystal is presented. We show
that a perfect Penrose tiling (PPT) layer can be grown on a decapod tiling
layer by a three dimensional (3D) local rule growth. Once a PPT layer begins to
form on the upper layer, successive 2D PPT layers can be added on top resulting
in a perfect decagonal quasicrystalline structure in bulk with a point defect
only on the bottom surface layer. Our growth rule shows that an ideal
quasicrystal structure can be constructed by a local growth algorithm in 3D,
contrary to the necessity of non-local information for a 2D PPT growth.Comment: 4pages, 2figure
Gaussian limits for generalized spacings
Nearest neighbor cells in , are used to define
coefficients of divergence (-divergences) between continuous multivariate
samples. For large sample sizes, such distances are shown to be asymptotically
normal with a variance depending on the underlying point density. In ,
this extends classical central limit theory for sum functions of spacings. The
general results yield central limit theorems for logarithmic -spacings,
information gain, log-likelihood ratios and the number of pairs of sample
points within a fixed distance of each other.Comment: Published in at http://dx.doi.org/10.1214/08-AAP537 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Gaussian limits for multidimensional random sequential packing at saturation (extended version)
Consider the random sequential packing model with infinite input and in any
dimension. When the input consists of non-zero volume convex solids we show
that the total number of solids accepted over cubes of volume is
asymptotically normal as . We provide a rate of
approximation to the normal and show that the finite dimensional distributions
of the packing measures converge to those of a mean zero generalized Gaussian
field. The method of proof involves showing that the collection of accepted
solids satisfies the weak spatial dependence condition known as stabilization.Comment: 31 page
Mathematics of random growing interfaces
We establish a thermodynamic limit and Gaussian fluctuations for the height
and surface width of the random interface formed by the deposition of particles
on surfaces. The results hold for the standard ballistic deposition model as
well as the surface relaxation model in the off-lattice setting. The results
are proved with the aid of general limit theorems for stabilizing functionals
of marked Poisson point processes.Comment: 12 page
The Final Remnant of Binary Black Hole Mergers: Multipolar Analysis
Methods are presented to define and compute source multipoles of dynamical
horizons in numerical relativity codes, extending previous work from the
isolated and dynamical horizon formalisms in a manner that allows for the
consideration of horizons that are not axisymmetric. These methods are then
applied to a binary black hole merger simulation, providing evidence that the
final remnant is a Kerr black hole, both through the (spatially)
gauge-invariant recovery of the geometry of the apparent horizon, and through a
detailed extraction of quasinormal ringing modes directly from the strong-field
region.Comment: 12 pages, 13 figures. Published version. Some references have been
added and reordered, and the figures cleaned up
- …
