154 research outputs found

    Universality and Scaling Behaviour of Injected Power in Elastic Turbulence in Worm-like Micellar Gel

    Full text link
    We study the statistical properties of spatially averaged global injected power fluctuations for Taylor-Couette flow of a worm-like micellar gel formed by surfactant CTAT. At sufficiently high Weissenberg numbers (Wi) the shear rate and hence the injected power p(t) at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (pdf) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian pdfs can be well described by an universal large deviation functional form given by the Generalized Gumbel (GG) distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in-situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence.Comment: 8 pages, 3 figure

    Current voltage characteristics and excess noise at the trap filling transition in polyacenes

    Get PDF
    Experiments in organic semiconductors (polyacenes) evidence a strong super quadratic increase of the current-voltage (I-V) characteristic at voltages in the transition region between linear (Ohmic) and quadratic (trap free space-charge-limited-current) behaviours. Similarly, excess noise measurements at a given frequency and increasing voltages evidence a sharp peak of the relative spectral density of the current noise in concomitance with the strong super-quadratic I-V characteristics. Here we discuss the physical interpretation of these experiments in terms of an essential contribution from field assisted trapping-detrapping processes of injected carriers. To this purpose, the fraction of filled traps determined by the I-V characteristics is used to evaluate the excess noise in the trap filled transition (TFT) regime. We have found an excellent agreement between the predictions of our model and existing experimental results in tetracene and pentacene thin films of different length in the range 0.65÷35 μm0.65 \div 35 \ \mu m.Comment: 20 pg, 13 figures, in pres

    Resistance and Resistance Fluctuations in Random Resistor Networks Under Biased Percolation

    Full text link
    We consider a two-dimensional random resistor network (RRN) in the presence of two competing biased percolations consisting of the breaking and recovering of elementary resistors. These two processes are driven by the joint effects of an electrical bias and of the heat exchange with a thermal bath. The electrical bias is set up by applying a constant voltage or, alternatively, a constant current. Monte Carlo simulations are performed to analyze the network evolution in the full range of bias values. Depending on the bias strength, electrical failure or steady state are achieved. Here we investigate the steady-state of the RRN focusing on the properties of the non-Ohmic regime. In constant voltage conditions, a scaling relation is found between /0/_0 and V/V0V/V_0, where is the average network resistance, 0_0 the linear regime resistance and V0V_0 the threshold value for the onset of nonlinearity. A similar relation is found in constant current conditions. The relative variance of resistance fluctuations also exhibits a strong nonlinearity whose properties are investigated. The power spectral density of resistance fluctuations presents a Lorentzian spectrum and the amplitude of fluctuations shows a significant non-Gaussian behavior in the pre-breakdown region. These results compare well with electrical breakdown measurements in thin films of composites and of other conducting materials.Comment: 15 figures, 23 page

    A network model to investigate structural and electrical properties of proteins

    Full text link
    One of the main trend in to date research and development is the miniaturization of electronic devices. In this perspective, integrated nanodevices based on proteins or biomolecules are attracting a major interest. In fact, it has been shown that proteins like bacteriorhodopsin and azurin, manifest electrical properties which are promising for the development of active components in the field of molecular electronics. Here we focus on two relevant kinds of proteins: The bovine rhodopsin, prototype of GPCR protein, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer disease. Both these proteins exert their functioning starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different electrical response associated with the different configurations. The model resolution of the electrical response is found able to monitor the structure and the conformational change of the given protein. In this respect, rhodopsin exhibits a better differential response than AChE. This result gives room to different interpretations of the degree of conformational change and in particular supports a recent hypothesis on the existence of a mixed state already in the native configuration of the protein.Comment: 25 pages, 12 figure

    A Biased Resistor Network Model for Electromigration Failure and Related Phenomena in Metallic Lines

    Full text link
    Electromigration phenomena in metallic lines are studied by using a biased resistor network model. The void formation induced by the electron wind is simulated by a stochastic process of resistor breaking, while the growth of mechanical stress inside the line is described by an antagonist process of recovery of the broken resistors. The model accounts for the existence of temperature gradients due to current crowding and Joule heating. Alloying effects are also accounted for. Monte Carlo simulations allow the study within a unified theoretical framework of a variety of relevant features related to the electromigration. The predictions of the model are in excellent agreement with the experiments and in particular with the degradation towards electrical breakdown of stressed Al-Cu thin metallic lines. Detailed investigations refer to the damage pattern, the distribution of the times to failure (TTFs), the generalized Black's law, the time evolution of the resistance, including the early-stage change due to alloying effects and the electromigration saturation appearing at low current densities or for short line lengths. The dependence of the TTFs on the length and width of the metallic line is also well reproduced. Finally, the model successfully describes the resistance noise properties under steady state conditions.Comment: 39 pages + 17 figure

    Tuning the Correlation Decay in the Resistance Fluctuations of Multi-Species Networks

    Full text link
    A new network model is proposed to describe the 1/fα1/f^\alpha resistance noise in disordered materials for a wide range of α\alpha values (0<α<20< \alpha < 2). More precisely, we have considered the resistance fluctuations of a thin resistor with granular structure in different stationary states: from nearly equilibrium up to far from equilibrium conditions. This system has been modelled as a network made by different species of resistors, distinguished by their resistances, temperature coefficients and by the energies associated with thermally activated processes of breaking and recovery. The correlation behavior of the resistance fluctuations is analyzed as a function of the temperature and applied current, in both the frequency and time domains. For the noise frequency exponent, the model provides 0<α<10< \alpha < 1 at low currents, in the Ohmic regime, with α\alpha decreasing inversely with the temperature, and 1<α<21< \alpha <2 at high currents, in the non-Ohmic regime. Since the threshold current associated with the onset of nonlinearity also depends on the temperature, the proposed model qualitatively accounts for the complicate behavior of α\alpha versus temperature and current observed in many experiments. Correspondingly, in the time domain, the auto-correlation function of the resistance fluctuations displays a variety of behaviors which are tuned by the external conditions.Comment: 26 pages, 16 figures, Submitted to JSTAT - Special issue SigmaPhi200

    Functionalization of single and multi-walled carbon nanotubes with polypropylene glycol decorated pyrrole for the development of doxorubicin nano-conveyors for cancer drug delivery

    Get PDF
    A recently reported functionalization of single and multi-walled carbon nanotubes, based on a cycloaddition reaction between carbon nanotubes and a pyrrole derived compound, was exploited for the formation of a doxorubicin (DOX) stacked drug delivery system. The obtained supramolecular nano-conveyors were characterized by wide-angle X-ray diffraction (WAXD), thermogravimetric analysis (TGA), high-resolution transmission electron microscopy (HR-TEM), and Fourier transform infrared (FT-IR) spectroscopy. The supramolecular interactions were studied by molecular dynamics simulations and by monitoring the emission and the absorption spectra of DOX. Biological studies revealed that two of the synthesized nano-vectors are effectively able to get the drug into the studied cell lines and also to enhance the cell mortality of DOX at a much lower effective dose. This work reports the facile functionalization of carbon nanotubes exploiting the “pyrrole methodology” for the development of novel technological carbon-based drug delivery systems

    Shot Noise in Linear Macroscopic Resistors

    Get PDF
    We report on a direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. Present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.Comment: 10 pages, 5 figure

    Generalised extreme value statistics and sum of correlated variables

    Full text link
    We show that generalised extreme value statistics -the statistics of the k-th largest value among a large set of random variables- can be mapped onto a problem of random sums. This allows us to identify classes of non-identical and (generally) correlated random variables with a sum distributed according to one of the three (k-dependent) asymptotic distributions of extreme value statistics, namely the Gumbel, Frechet and Weibull distributions. These classes, as well as the limit distributions, are naturally extended to real values of k, thus providing a clear interpretation to the onset of Gumbel distributions with non-integer index k in the statistics of global observables. This is one of the very few known generalisations of the central limit theorem to non-independent random variables. Finally, in the context of a simple physical model, we relate the index k to the ratio of the correlation length to the system size, which remains finite in strongly correlated systems.Comment: To appear in J.Phys.

    Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy

    Get PDF
    BackgroundIn fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration.ResultsA genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested.ConclusionsThese findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage
    corecore