124 research outputs found

    Identifying global priorities for the conservation of vipers

    Get PDF
    Vipers are among the most misunderstood and persecuted animals. They occupy most terrestrial ecosystems around the world, often at high population densities. However, certain aspects of their biology (e.g., low fecundity and slow growth) have resulted in vipers being disproportionately threatened by extinction. Despite increased extinction risk, relatively little is known about viper biology, severely limiting the development and implementation of conservation initiatives. Here, we review the conservation status of vipers globally, map species richness, and develop three indices (one reactive; one proactive; one combined index emphasising irreplaceable species facing severe threats) to identify species for which conservation action should be prioritised. Moreover, we map species richness weighted by each index to identify regions for conservation prioritisation. We ranked prioritisation scores for all species for which data were available. In doing so we identify species for which valuable data are missing and that should be prioritised for research. We additionally show that 17 species, currently listed as Not Assessed or Data Deficient by the IUCN, score sufficiently high on our Threat Index to be considered as Threatened in the future. We identify multiple regions for which viper conservation action should be prioritised. These areas broadly correlate with species richness patterns, suggesting that species richness may be an effective proxy for conservation planning. Finally, we discuss the major gaps in knowledge, as well as the major threats facing vipers

    Predictive value of synaptic plasticity for functional decline in patients with multiple sclerosis.

    Get PDF
    BACKGROUND Previous research suggested that quadripulse (QPS)-induced synaptic plasticity is associated with both cognitive and motor function in patients with multiple sclerosis (MS) and does not appear to be reduced compared to healthy controls (HCs). OBJECTIVE This study aimed to explore the relationship between the degree of QPS-induced plasticity and clinically significant decline in motor and cognitive functions over time. We hypothesized that MS patients experiencing functional decline would exhibit lower levels of baseline plasticity compared to those without decline. METHODS QPS-induced plasticity was evaluated in 80 MS patients (56 with relapsing-remitting MS and 24 with progressive MS), and 69 age-, sex-, and education-matched HCs. Cognitive and motor functions, as well as overall disability status were evaluated annually over a median follow-up period of 2 years. Clinically meaningful change thresholds were predefined for each outcome measure. Linear mixed-effects models, Cox proportional hazard models, logistic regression, and receiver-operating characteristic analysis were applied to analyse the relationship between baseline plasticity and clinical progression in the symbol digit modalities test, brief visuospatial memory test revised (BVMT-R), nine-hole peg test (NHPT), timed 25-foot walk test, and expanded disability status scale. RESULTS Overall, the patient cohort showed no clinically relevant change in any functional outcome over time. Variability in performance was observed across time points in both patients and HCs. MS patients who experienced clinically relevant decline in manual dexterity and/or visuospatial learning and memory had significantly lower levels of synaptic plasticity at baseline compared to those without such decline (NHPT: β = -0.25, p = 0.02; BVMT-R: β = -0.50, p = 0.005). Receiver-operating characteristic analysis underscored the predictive utility of baseline synaptic plasticity in discerning between patients experiencing functional decline and those maintaining stability only for visuospatial learning and memory (area under the curve = 0.85). CONCLUSION Our study suggests that QPS-induced plasticity could be linked to clinically relevant functional decline in patients with MS. However, to solidify these findings, longer follow-up periods are warranted, especially in cohorts with higher prevalences of functional decline. Additionally, the variability in cognitive performance in both patients with MS and HCs underscores the importance of conducting further research on reliable change based on neuropsychological tests

    Predictive value of synaptic plasticity for functional decline in patients with multiple sclerosis

    Get PDF
    BackgroundPrevious research suggested that quadripulse (QPS)-induced synaptic plasticity is associated with both cognitive and motor function in patients with multiple sclerosis (MS) and does not appear to be reduced compared to healthy controls (HCs).ObjectiveThis study aimed to explore the relationship between the degree of QPS-induced plasticity and clinically significant decline in motor and cognitive functions over time. We hypothesized that MS patients experiencing functional decline would exhibit lower levels of baseline plasticity compared to those without decline.MethodsQPS-induced plasticity was evaluated in 80 MS patients (56 with relapsing-remitting MS and 24 with progressive MS), and 69 age-, sex-, and education-matched HCs. Cognitive and motor functions, as well as overall disability status were evaluated annually over a median follow-up period of 2 years. Clinically meaningful change thresholds were predefined for each outcome measure. Linear mixed-effects models, Cox proportional hazard models, logistic regression, and receiver-operating characteristic analysis were applied to analyse the relationship between baseline plasticity and clinical progression in the symbol digit modalities test, brief visuospatial memory test revised (BVMT-R), nine-hole peg test (NHPT), timed 25-foot walk test, and expanded disability status scale.ResultsOverall, the patient cohort showed no clinically relevant change in any functional outcome over time. Variability in performance was observed across time points in both patients and HCs. MS patients who experienced clinically relevant decline in manual dexterity and/or visuospatial learning and memory had significantly lower levels of synaptic plasticity at baseline compared to those without such decline (NHPT: β = −0.25, p = 0.02; BVMT-R: β = −0.50, p = 0.005). Receiver-operating characteristic analysis underscored the predictive utility of baseline synaptic plasticity in discerning between patients experiencing functional decline and those maintaining stability only for visuospatial learning and memory (area under the curve = 0.85).ConclusionOur study suggests that QPS-induced plasticity could be linked to clinically relevant functional decline in patients with MS. However, to solidify these findings, longer follow-up periods are warranted, especially in cohorts with higher prevalences of functional decline. Additionally, the variability in cognitive performance in both patients with MS and HCs underscores the importance of conducting further research on reliable change based on neuropsychological tests

    Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens

    Get PDF
    Millions of scientific specimens are housed in museum collections, a large part of which are fluid preserved. The use of formaldehyde as fixative and subsequent storage in ethanol is especially common in ichthyology and herpetology. This type of preservation damages DNA and reduces the chance of successful retrieval of genetic data. We applied ancient DNA extraction and single stranded library construction protocols to a variety of vertebrate samples obtained from wet collections and of different ages. Our results show that almost all samples tested yielded endogenous DNA. Archival DNA extraction was successful across different tissue types as well as using small amounts of tissue. Conversion of archival DNA fragments into single-stranded libraries resulted in usable data even for samples with initially undetectable DNA amounts. Subsequent target capture approaches for mitochondrial DNA using homemade baits on a subset of 30 samples resulted in almost complete mitochondrial genome sequences in several instances. Thus, application of ancient DNA methodology makes wet collection specimens, including type material as well as rare, old or extinct species, accessible for genetic and genomic analyses. Our results, accompanied by detailed step-by-step protocols, are a large step forward to open the DNA archive of museum wet collections for scientific studies.publishedVersio

    The importance of pyramidal tract integrity for cortical plasticity and related functionality in patients with multiple sclerosis

    Get PDF
    BackgroundCortical plasticity induced by quadripulse stimulation (QPS) has been shown to correlate with cognitive functions in patients with relapsing-remitting multiple sclerosis (RRMS) and to not be reduced compared to healthy controls (HCs).ObjectiveThis study aimed to compare the degree of QPS-induced plasticity between different subtypes of multiple sclerosis (MS) and HCs and to investigate the association of the degree of plasticity with motor and cognitive functions. We expected lower levels of plasticity in patients with progressive MS (PMS) but not RRMS compared to HCs. Furthermore, we expected to find positive correlations with cognitive and motor performance in patients with MS.MethodsQPS-induced plasticity was compared between 34 patients with PMS, 30 patients with RRMS, and 30 HCs using linear mixed-effects models. The degree of QPS-induced cortical plasticity was correlated with various motor and cognitive outcomes.ResultsThere were no differences regarding the degree of QPS-induced cortical plasticity between HCs and patients with RRMS (p = 0.86) and PMS (p = 0.18). However, we only found correlations between the level of induced plasticity and both motor and cognitive functions in patients with intact corticospinal tract integrity. Exploratory analysis revealed significantly reduced QPS-induced plasticity in patients with damage compared to intact corticospinal tract integrity (p < 0.001).ConclusionOur study supports the notion of pyramidal tract integrity being of more relevance for QPS-induced cortical plasticity in MS and related functional significance than the type of disease

    Constraining the Twomey effect from satellite observations: issues and perspectives

    Get PDF
    The Twomey effect describes the radiative forcing associated with a change in cloud albedo due to an increase in anthropogenic aerosol emissions. It is driven by the perturbation in cloud droplet number concentration (1Nd; ant) in liquid-water clouds and is currently understood to exert a cooling effect on climate. The Twomey effect is the key driver in the effective radiative forcing due to aerosol–cloud interactions, but rapid adjustments also contribute. These adjustments are essentially the responses of cloud fraction and liquid water path to 1Nd; ant and thus scale approximately with it. While the fundamental physics of the influence of added aerosol particles on the droplet concentration (Nd) is well described by established theory at the particle scale (micrometres), how this relationship is expressed at the large-scale (hundreds of kilometres) perturbation, 1Nd; ant, remains uncertain. The discrepancy between process understanding at particle scale and insufficient quantification at the climate-relevant large scale is caused by co-variability of aerosol particles and updraught velocity and by droplet sink processes. These operate at scales on the order of tens of metres at which only localised observations are available and at which no approach yet exists to quantify the anthropogenic perturbation. Different atmospheric models suggest diverse magnitudes of the Twomey effect even when applying the same anthropogenic aerosol emission perturbation. Thus, observational data are needed to quantify and constrain the Twomey effect. At the global scale, this means satellite data. There are four key uncertainties in determining 1Nd; ant, namely the quantification of (i) the cloud-active aerosol – the cloud condensation nuclei (CCN) concentrations at or above cloud base, (ii) Nd, (iii) the statistical approach for inferring the sensitivity of Nd to aerosol particles from the satellite data and (iv) uncertainty in the anthropogenic perturbation to CCN concentrations, which is not easily accessible from observational data. This review discusses deficiencies of current approaches for the different aspects of the problem and proposes several ways forward: in terms of CCN, retrievals of optical quantities such as aerosol optical depth suffer from a lack of vertical resolution, size and hygroscopicity information, non-direct relation to the concentration of aerosols, difficulty to quantify it within or below clouds, and the problem of insufficient sensitivity at low concentrations, in addition to retrieval errors. A future path forward can include utilising co-located polarimeter and lidar instruments, ideally including high-spectral-resolution lidar capability at two wavelengths to maximise vertically resolved size distribution information content. In terms of Nd, a key problem is the lack of operational retrievals of this quantity and the inaccuracy of the retrieval especially in broken-cloud regimes. As for the Nd-to-CCN sensitivity, key issues are the updraught distributions and the role of Nd sink processes, for which empirical assessments for specific cloud regimes are currently the best solutions. These considerations point to the conclusion that past studies using existing approaches have likely underestimated the true sensitivity and, thus, the radiative forcing due to the Twomey effect

    Syngas and HDS catalysts derived from sulphido bimetallic clusters

    Full text link
    The clusters, CP2'Mo2Fe2S2(CO)8 (MoFeS) and Cp2'Mo2CO2S3(CO)4 (MoCoS) (Cp' = [eta]-C5H4Me) have been supported on the refractory oxides, Al2O3, SiO2, TiO2, and MgO, and subjected to temperature programmed decomposition (TPDE) under flowing H2. Typically, CO evolution commences near 100[deg]C, followed by evolution of 1-2 Cp-ligands from 180 to 400[deg]C along with small amounts of CO2, CH4, and H2S or Me2S. The resulting compositions are shown to be active catalysts for CO hydrogenation and hydrodesulphurization (HDS) of thiophene. Methane is the principal hydrocarbon product from CO hydrogenation except for MoFeS/MgO where high selectivity for C2 products was observed. The activity and selectivity of MoCoS/Al2O3 for thiophene HDS closely resembles those of conventionally prepared "cobalt molybdate" catalysts. The cluster derived catalysts have been characterized by Mossbauer and X-ray absorption (XANES) and EXAFS) spectroscopies. It is concluded that the clusters undergo oxidation by the surface upon loss of organic ligands.AbstractThe results obtained to date show that sulphido bimetallic clusters are excellent precursors for the formation of uniform catalytic surfaces. The uniformity of the surface species facilitates physical characterization of the active site(s). Our results show that the supported clusters are transformed to surface oxo-ensembles which are active for CO hydrogenation and HDS of organic sulphur compounds.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27613/1/0000657.pd

    Metastable Se6 as a ligand for Ag+: from isolated molecular to polymeric 1D and 2D structures

    Get PDF
    Attempts to prepare the hitherto unknown Se6 2+ cation by the reaction of elemental selenium and Ag[A] ([A]- = [Sb(OTeF5)6]-, [Al(OC(CF3)3)4]-) in SO2 led to the formation of [(OSO)Ag(Se6)Ag(OSO)][Sb(OTeF5)6]2 1 and [(OSO)2Ag(Se6)Ag(OSO)2][Al(OC(CF3)3)4]2 2a. 1 could only be prepared by using bromine as co-oxidant, however, bulk 2b (2a with loss of SO2) was accessible from Ag[Al(OC(CF3)3)4] and grey Se in SO2 (chem. analysis). The reactions of Ag[MF6] (M= As, Sb) and elemental selenium led to crystals of 1/∞{[Ag(Se6)]∞[Ag2(SbF6)3]∞} 3 and {1/∞[Ag(Se6)Ag]∞}[AsF6]2 4. Pure bulk 4 was best prepared by the reaction of Se4[AsF6]2, silver metal and elemental selenium. Attempts to prepare bulk 1 and 3 were unsuccessful. 1–4 were characterized by single-crystal X-ray structure determinations, 2b and 4 additionally by chemical analysis and 4 also by X-ray powder diffraction, FT-Raman and FT-IR pectroscopy. Application of the PRESTO III sequence allowed for the first time 109Ag MAS NMR investigations of 4 as well as AgF, AgF2, AgMF6 and {1/∞[Ag(I2)]∞}[MF6] (M= As, Sb). Compounds 1 and 2a/b, with the very large counter ions, contain isolated [Ag(Se6)Ag]2+ heterocubane units consisting of a Se6 molecule bicapped by two silver cations (local D3d sym). 3 and 4, with the smaller anions, contain close packed stacked arrays of Se6 rings with Ag+ residing in octahedral holes. Each Ag+ ion coordinates to three selenium atoms of each adjacent Se6 ring. 4 contains [Ag(Se6)+]∞ stacks additionally linked by Ag(2)+ into a two dimensional network. 3 features a remarkable 3-dimensional [Ag2(SbF6)3]- anion held together by strong Sb–F … Ag contacts between the component Ag+ and [SbF6]- ions. The hexagonal channels formed by the [Ag2(SbF6)3]- anions are filled by stacks of [Ag(Se6)+]∞ cations. Overall 1–4 are new members of the rare class of metal complexes of neutral main group elemental clusters, in which the main group element is positively polarized due to coordination to a metal ion. Notably, 1 to 4 include the commonly metastable Se6 molecule as a ligand. The structure, bonding and thermodynamics of 1 to 4 were investigated with the help of quantum chemical calculations (PBE0/TZVPP and (RI-)MP2/TZVPP, in part including COSMO solvation) and Born–Fajans–Haber-cycle calculations. From an analysis of all the available data it appears that the formation of the usually metastable Se6 molecule from grey selenium is thermodynamically driven by the coordination to the Ag+ ions

    Seeking serpents: ball python trade in Benin, West Africa

    Get PDF
    Ball pythons are traded as bushmeat, leather and belief-based medicine in West Africa, and specimens are exported in large numbers for the exotic pet trade. Here, we focused on understanding the purpose and socio-economic context of this trade in Benin through interviews with 44 actors involved in the trade of this species. We provided a snapshot of trade dynamics during a period when hunters are not predominantly actively involved in supplying eggs, neonates and gravid females for ranching and export as exotic pets. Our findings revealed that hunters and traders were largely focused on supplying the bushmeat and medicine markets in West Africa during this time. We estimated that the 21 collectors engaged in hunting in our study collectively hunt between 576 and 5,083 ball pythons from the wild each year. Collection rates reported by some suggests that they could earn more than 15,000 USD from ball python sales in bushmeat markets annually. Ball pythons hunted in Benin were mainly sold to local customers as “bushmeat” (53%) or for belief-based uses (39%) (including “fetish”, “medicinal products” and “voodoo”). However, cross-border trade with neighboring countries of Togo, Nigeria, and Ghana (or even further) also occurred. Although profitable for some, the scale of this practice, together with the widely reported decline in ball python populations in Benin, raises concern about the sustainability and long-term economic viability of this type of large-scale commercial wildlife trade in West Africa, especially as it occurs alongside extensive ranching practices to support the exotic pet trade
    corecore