70 research outputs found

    Comparison of 3 T and 1.5 T for T2* magnetic resonance of tissue iron.

    Get PDF
    BACKGROUND: T2* magnetic resonance of tissue iron concentration has improved the outcome of transfusion dependant anaemia patients. Clinical evaluation is performed at 1.5 T but scanners operating at 3 T are increasing in numbers. There is a paucity of data on the relative merits of iron quantification at 3 T vs 1.5 T. METHODS: A total of 104 transfusion dependent anaemia patients and 20 normal volunteers were prospectively recruited to undergo cardiac and liver T2* assessment at both 1.5 T and 3 T. Intra-observer, inter-observer and inter-study reproducibility analysis were performed on 20 randomly selected patients for cardiac and liver T2*. RESULTS: Association between heart and liver T2* at 1.5 T and 3 T was non-linear with good fit (R (2) = 0.954, p < 0.001 for heart white-blood (WB) imaging; R (2) = 0.931, p < 0.001 for heart black-blood (BB) imaging; R (2) = 0.993, p < 0.001 for liver imaging). R2* approximately doubled between 1.5 T and 3 T with linear fits for both heart and liver (94, 94 and 105 % respectively). Coefficients of variation for intra- and inter-observer reproducibility, as well as inter-study reproducibility trended to be less good at 3 T (3.5 to 6.5 %) than at 1.5 T (1.4 to 5.7 %) for both heart and liver T2*. Artefact scores for the heart were significantly worse with the 3 T BB sequence (median 4, IQR 2-5) compared with the 1.5 T BB sequence (4 [3-5], p = 0.007). CONCLUSION: Heart and liver T2* and R2* at 3 T show close association with 1.5 T values, but there were more artefacts at 3 T and trends to lower reproducibility causing difficulty in quantifying low T2* values with high tissue iron. Therefore T2* imaging at 1.5 T remains the gold standard for clinical practice. However, in centres where only 3 T is available, equivalent values at 1.5 T may be approximated by halving the 3 T tissue R2* with subsequent conversion to T2*

    Wintertime Spatial Distribution of Ammonia and its Emission Sources in the Great Salt Lake Region

    Get PDF
    Ammonium-containing aerosols are a major component of wintertime air pollution in many densely populated regions around the world. Especially in mountain basins, the formation of persistent cold-air pools (PCAPs) can enhance particulate matter with diameters less than 2.5 µm (PM2.5) to levels above air quality standards. Under these conditions, PM2.5 in the Great Salt Lake region of northern Utah has been shown to be primarily composed of ammonium nitrate; however, its formation processes and sources of its precursors are not fully understood. Hence, it is key to understanding the emission sources of its gas phase precursor, ammonia (NH3). To investigate the formation of ammonium nitrate, a suite of trace gases and aerosol composition were sampled from the NOAA Twin Otter aircraft during the Utah Winter Fine Particulate Study (UWFPS) in January and February 2017. NH3 was measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS), while aerosol composition, including particulate ammonium (pNH4), was measured with an aerosol mass spectrometer (AMS). The origin of the sampled air masses was investigated using the Stochastic Time-Inverted Lagrangian Transport (STILT) model and combined with an NH3 emission inventory to obtain model-predicted NHx (=NH3+pNH4) enhancements. Enhancements represent the increase in NH3 mixing ratios within the last 24 h due to emissions within the model footprint. Comparison of these NHx enhancements with measured NHx from the Twin Otter shows that modelled values are a factor of 1.6 to 4.4 lower for the three major valleys in the region. Among these, the underestimation is largest for Cache Valley, an area with intensive agricultural activities. We find that one explanation for the underestimation of wintertime emissions may be the seasonality factors applied to NH3 emissions from livestock. An investigation of inter-valley exchange revealed that transport of NH3 between major valleys was limited and PM2.5 in Salt Lake Valley (the most densely populated area in Utah) was not significantly impacted by NH3 from the agricultural areas in Cache Valley. We found that in Salt Lake Valley around two thirds of NHx originated within the valley, while about 30 % originated from mobile sources and 60 % from area source emissions in the region. For Cache Valley, a large fraction of NOx potentially leading to PM2.5 formation may not be locally emitted but mixed in from other counties

    Development of a Multilevel Intervention to Increase Colorectal Cancer Screening in Appalachia

    Get PDF
    Background Colorectal cancer (CRC) screening rates are lower in Appalachian regions of the United States than in non-Appalachian regions. Given the availability of various screening modalities, there is critical need for culturally relevant interventions addressing multiple socioecological levels to reduce the regional CRC burden. In this report, we describe the development and baseline findings from year 1 of “Accelerating Colorectal Cancer Screening through Implementation Science (ACCSIS) in Appalachia,” a 5-year, National Cancer Institute Cancer MoonshotSM-funded multilevel intervention (MLI) project to increase screening in Appalachian Kentucky and Ohio primary care clinics. Methods Project development was theory-driven and included the establishment of both an external Scientific Advisory Board and a Community Advisory Board to provide guidance in conducting formative activities in two Appalachian counties: one in Kentucky and one in Ohio. Activities included identifying and describing the study communities and primary care clinics, selecting appropriate evidence-based interventions (EBIs), and conducting a pilot test of MLI strategies addressing patient, provider, clinic, and community needs. Results Key informant interviews identified multiple barriers to CRC screening, including fear of screening, test results, and financial concerns (patient level); lack of time and competing priorities (provider level); lack of reminder or tracking systems and staff burden (clinic level); and cultural issues, societal norms, and transportation (community level). With this information, investigators then offered clinics a menu of EBIs and strategies to address barriers at each level. Clinics selected individually tailored MLIs, including improvement of patient education materials, provision of provider education (resulting in increased knowledge, p = .003), enhancement of electronic health record (EHR) systems and development of clinic screening protocols, and implementation of community CRC awareness events, all of which promoted stool-based screening (i.e., FIT or FIT-DNA). Variability among clinics, including differences in EHR systems, was the most salient barrier to EBI implementation, particularly in terms of tracking follow-up of positive screening results, whereas the development of clinic-wide screening protocols was found to promote fidelity to EBI components. Conclusions Lessons learned from year 1 included increased recognition of variability among the clinics and how they function, appreciation for clinic staff and provider workload, and development of strategies to utilize EHR systems. These findings necessitated a modification of study design for subsequent years. Trial registration Trial NCT04427527 is registered at https://clinicaltrials.gov and was registered on June 11, 2020

    Project Report No. 59, Site Index Equations for Loblolly and Slash Pine Plantations in East Texas, Update: Fall 1997

    Get PDF
    Each published set of equations was developed from analyses of East Texas Pine Plantation Research Project (ETPPRP) data collected from the array of ETPPRP permanent research plots located throughout East Texas

    One tissue, two fates: different roles of megagametophyte cells during Scots pine embryogenesis

    Get PDF
    In the Scots pine (Pinus sylvestris L.) seed, embryos grow and develop within the corrosion cavity of the megagametophyte, a maternally derived haploid tissue, which houses the majority of the storage reserves of the seed. In the present study, histochemical methods and quantification of the expression levels of the programmed cell death (PCD) and DNA repair processes related genes (MCA, TAT-D, RAD51, KU80, and LIG) were used to investigate the physiological events occurring in the megagametophyte tissue during embryo development. It was found that the megagametophyte was viable from the early phases of embryo development until the early germination of mature seeds. However, the megagametophyte cells in the narrow embryo surrounding region (ESR) were destroyed by cell death with morphologically necrotic features. Their cell wall, plasma membrane, and nuclear envelope broke down with the release of cell debris and nucleic acids into the corrosion cavity. The occurrence of necrotic-like cell death in gymnosperm embryogenesis provides a favourable model for the study of developmental cell death with necrotic-like morphology and suggests that the mechanism underlying necrotic cell death is evolutionary conserved

    Lack of replication for the myosin-18B association with mathematical ability in independent cohorts

    Get PDF
    Twin studies indicate that dyscalculia (or mathematical disability) is caused partly by a genetic component, which is yet to be understood at the molecular level. Recently, a coding variant (rs133885) in the myosin-18B gene was shown to be associated with mathematical abilities with a specific effect among children with dyslexia. This association represents one of the most significant genetic associations reported to date for mathematical abilities and the only one reaching genome-wide statistical significance. We conducted a replication study in different cohorts to assess the effect of rs133885 maths-related measures. The study was conducted primarily using the Avon Longitudinal Study of Parents and Children (ALSPAC), (N=3819). We tested additional cohorts including the York Cohort, the Specific Language Impairment Consortium (SLIC) cohort and the Raine Cohort, and stratified them for a definition of dyslexia whenever possible. We did not observe any associations between rs133885 in myosin-18B and mathematical abilities among individuals with dyslexia or in the general population. Our results suggest that the myosin-18B variant is unlikely to be a main factor contributing to mathematical abilities. We could not replicate the association of the myosin-18B gene with mathematical ability. 2015 The Authors.casl14pub3906pub
    corecore