43,439 research outputs found
Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation
Magnetic rotation and antimagnetic rotation are exotic rotational phenomena
observed in weakly deformed or near-spherical nuclei, which are
respectivelyinterpreted in terms of the shears mecha-nism and two shearslike
mechanism. Since their observations, magnetic rotation and antimagnetic
rotation phenomena have been mainly investigated in the framework of tilted
axis cranking based on the pairing plus quadrupole model. For the last decades,
the covariant density functional theory and its extension have been proved to
be successful in describing series of nuclear ground-states and excited states
properties, including the binding energies, radii, single-particle spectra,
resonance states, halo phenomena, magnetic moments, magnetic rotation,
low-lying excitations, shape phase transitions, collective rotation and
vibrations, etc. This review will mainly focus on the tilted axis cranking
covariant density functional theory and its application for the magnetic
rotation and antimagnetic rotation phenomena.Comment: 53 pages, 19 figure
Temperature-dependent Raman scattering of KTa1-xNbxO3 thin films
We report a Raman scattering investigation of KTa1-xNbxO3 (x = 0.35, 0.5)
thin films deposited on MgO and LaAlO3 as a function of temperature. The
observed phase sequence in the range from 90 K to 720 K is similar to the
structural phase transitions of the end-member material KNbO3. Although similar
in the phase sequence, the actual temperatures observed for phase transition
temperatures are significantly different from those observed in the literature
for bulk samples. Namely, the tetragonal (ferroelectric) to cubic
(paraelectric) phase transition is up to 50 K higher in the films when compared
to bulk samples. This enhanced ferroelectricity is attributed to biaxial strain
in the investigated thin films
Antimagnetic Rotation Band in Nuclei: A Microscopic Description
Covariant density functional theory and the tilted axis cranking method are
used to investigate antimagnetic rotation (AMR) in nuclei for the first time in
a fully self-consistent and microscopic way. The experimental spectrum as well
as the B(E2) values of the recently observed AMR band in 105Cd are reproduced
very well. This gives a further strong hint that AMR is realized in specific
bands in nuclei.Comment: 10 pages, 4 figure
A Simplified Scheme of Estimation and Cancellation of Companding Noise for Companded Multicarrier Transmission Systems
Nonlinear companding transform is an efficient method to reduce the high peak-to-average power ratio (PAPR) of multicarrier transmission systems. However, the introduced companding noise greatly degrades the bit-error-rate (BER) performance of the companded multicarrier systems. In this paper, a simplified but effective scheme of estimation and cancellation of companding noise for the companded multicarrier transmission system is proposed. By expressing the companded signals as the summation of original signals added with a companding noise component, and subtracting this estimated companding noise from the received signals, the BER performance of the overall system can be significantly improved. Simulation results well confirm the great advantages of the proposed scheme over other conventional decompanding or no decompanding schemes under various situations
Strain Modulated Electronic Properties of Ge Nanowires - A First Principles Study
We used density-functional theory based first principles simulations to study
the effects of uniaxial strain and quantum confinement on the electronic
properties of germanium nanowires along the [110] direction, such as the energy
gap and the effective masses of the electron and hole. The diameters of the
nanowires being studied are up to 50 {\AA}. As shown in our calculations, the
Ge [110] nanowires possess a direct band gap, in contrast to the nature of an
indirect band gap in bulk. We discovered that the band gap and the effective
masses of charge carries can be modulated by applying uniaxial strain to the
nanowires. These strain modulations are size-dependent. For a smaller wire (~
12 {\AA}), the band gap is almost a linear function of strain; compressive
strain increases the gap while tensile strain reduces the gap. For a larger
wire (20 {\AA} - 50 {\AA}), the variation of the band gap with respect to
strain shows nearly parabolic behavior: compressive strain beyond -1% also
reduces the gap. In addition, our studies showed that strain affects effective
masses of the electron and hole very differently. The effective mass of the
hole increases with a tensile strain while the effective mass of the electron
increases with a compressive strain. Our results suggested both strain and size
can be used to tune the band structures of nanowires, which may help in design
of future nano-electronic devices. We also discussed our results by applying
the tight-binding model.Comment: 1 table, 8 figure
- …