158 research outputs found
Real-world Deep Local Motion Deblurring
Most existing deblurring methods focus on removing global blur caused by
camera shake, while they cannot well handle local blur caused by object
movements. To fill the vacancy of local deblurring in real scenes, we establish
the first real local motion blur dataset (ReLoBlur), which is captured by a
synchronized beam-splitting photographing system and corrected by a
post-progressing pipeline. Based on ReLoBlur, we propose a Local Blur-Aware
Gated network (LBAG) and several local blur-aware techniques to bridge the gap
between global and local deblurring: 1) a blur detection approach based on
background subtraction to localize blurred regions; 2) a gate mechanism to
guide our network to focus on blurred regions; and 3) a blur-aware patch
cropping strategy to address data imbalance problem. Extensive experiments
prove the reliability of ReLoBlur dataset, and demonstrate that LBAG achieves
better performance than state-of-the-art global deblurring methods without our
proposed local blur-aware techniques
Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna
Active phased array antennas (APAAs) can suffer from the effects of harsh thermal environments, which are caused by the large quantity of power generated by densely packed T/R modules and external thermal impacts. The situation may be worse in the case of limited room and severe thermal loads, due to heat radiation and a low temperature sink. The temperature field of the antenna can be changed. Since large numbers of temperature-sensitive electronic components exist in T/R modules, excitation current output can be significantly affected and the electromagnetic performance of APAAs can be seriously degraded. However, due to a lack of quantitative analysis, it is difficult to directly estimate the effect of temperature on the electromagnetic performance of APAAs. Therefore, this study investigated the electromagnetic performance of APAAs as affected by two key factorsāthe uniformly distributed temperature field and the temperature gradient fieldābased on different antenna shapes and sizes, to provide theoretical guidance for their thermal design
The surface structure and hydrophobic recovery of poly-dimethylsioxane insulator after ar plasma treatment
The effect of small molecules in poly(dimethyl siloxane) (PDMS) on the hydrophobic recovery has been studied. Soxhlet extraction was employed to remove the small molecules. The original and extracted samples were probed by positron annihilation and scanning electron microscopy (SEM). The results confirmed that the surface of unmodified PDMS is covered by the small molecules. PDMSwith varying octamethylsiloxane (D4) content was modified by argon plasma. The variation of contact angle with the ageing time for different samples was studied by contact angle measurement. As a result it was shown that all the samples can recover to the original hydrophobic surface state after sufficient ageing time. Samples with higher D4 content exhibit a faster hydrophobic recovery. For the sample extracted first and then plasma modified, the hydrophobic recovery rate is very low, and such samples did not return to the untreated hydrophobic state. 1
Genome-Wide Association Study of Tacrolimus Pharmacokinetics Identifies Novel Single Nucleotide Polymorphisms in the Convalescence and Stabilization Periods of Post-transplant Liver Function
After liver transplantation, the liver function of a patient is gradually restored over a period of time that can be divided into a convalescence period (CP) and a stabilizing period (SP). The plasma concentration of tacrolimus, an immunosuppressant commonly used to prevent organ rejection, varies as a result of variations in its metabolism. The effects of genetic and clinical factors on the plasma concentration of tacrolimus appear to differ in the CP and SP. To establish a model explaining the variation in tacrolimus trough concentration between individuals in the CP and SP, we conducted a retrospective, single-center, discovery study of 115 pairs of patients (115 donors and 115 matched recipients) who had undergone liver transplantation. Donors and recipients were genotyped by a genome-wide association study (GWAS) using an exome chip. Novel exons were identified that influenced tacrolimus trough concentrations and were verified with bootstrap analysis. In donors, two single-nucleotide polymorphisms showed an effect on the CP (rs1927321, rs1057192) and four showed an effect on the SP (rs776746, rs2667662, rs7980521, rs4903096); in recipients, two single-nucleotide polymorphisms showed an effect in the SP (rs7828796, rs776746). Genetic factors played a crucial role in tacrolimus metabolism, accounting for 44.8% in the SP, which was higher than previously reported. In addition, we found that CYP3A5, which is known to affect the metabolism of tacrolimus, only influenced tacrolimus pharmacokinetics in the SP
1-Alpha, 25-dihydroxyvitamin D3 alters the pharmacokinetics of mycophenolic acid in renal transplant recipients by regulating two extrahepatic UDP-glucuronosyltransferases 1A8 and 1A10
Mycophenolic acid (MPA) is an important immunosuppressant broadly used in renal transplantation. However, the large inter-patient variability in mycophenolic acid (MPA) pharmacokinetics (PK) limits its use. We hypothesize that extrahepatic metabolism of MPA may have significant impact on MPA PK variability. Two intestinal UDP-glucuronosyltransferases 1A8 and 1A10 plays critical role in MPA metabolism. Both in silico and previous genome-wide analyses suggested that vitamin D (VD) may regulate intestinal UGT1A expression. We validated the VD response elements (VDREs) across the UGT1A locus with chromatin immunoprecipitation (ChIP) and luciferase reporter assays. The impact of 1-alpha,25-dihydroxyvitamin D3 (D3) on UGT1A8 and UGT1A10 transcription and on MPA glucuronidation was tested in human intestinal cell lines LS180, Caco-2 and HCT-116. The correlation between transcription levels of VD receptor (VDR) and the two UGT genes were examined in human normal colorectal tissue samples (n = 73). PK alterations of MPA following the parent drug, mycophenolate mofetil (MMF), and D3 treatment was assessed among renal transplant recipients (n = 10). Our ChIP assay validate three VDREs which were further demonstrated as transcriptional enhancers with the luciferase assays. D3 treatment significantly increased transcription of both UGT genes as well as MPA glucuronidation in cells. The VDR mRNA level was highly correlated with that of both UGT1A8 and UGT1A10 in human colorectal tissue. D3 treatment in patients led to about 40% reduction in both AUC0-12 and Cmax while over 70% elevation of total clearance of MPA. Our study suggested a significant regulatory role of VD on MPA metabolism and PK via modulating extrahepatic UGT activity
Construction and validation of risk prediction models for pulmonary embolism in hospitalized patients based on different machine learning methods
ObjectiveThis study aims to apply different machine learning (ML) methods to construct risk prediction models for pulmonary embolism (PE) in hospitalized patients, and to evaluate and compare the predictive efficacy and clinical benefit of each model.MethodsWe conducted a retrospective study involving 332 participants (172 PE positive cases and 160 PE negative cases) recruited from Guangdong Medical University. Participants were randomly divided into a training group (70%) and a validation group (30%). Baseline data were analyzed using univariate analysis, and potential independent risk factors associated with PE were further identified through univariate and multivariate logistic regression analysis. Six ML models, namely Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Support Vector Machine (SVM), and AdaBoost were developed. The predictive efficacy of each model was compared using the receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC). Clinical benefit was assessed using decision curve analysis (DCA).ResultsLogistic regression analysis identified lower extremity deep venous thrombosis, elevated D-dimer, shortened activated partial prothrombin time, and increased red blood cell distribution width as potential independent risk factors for PE. Among the six ML models, the RF model achieved the highest AUC of 0.778. Additionally, DCA consistently indicated that the RF model offered the greatest clinical benefit.ConclusionThis study developed six ML models, with the RF model exhibiting the highest predictive efficacy and clinical benefit in the identification and prediction of PE occurrence in hospitalized patients
SPTAN1/Numb Axis Senses Cell Density To Restrain Cell Growth and Oncogenesis Through Hippo Signaling
The loss of contact inhibition is a key step during carcinogenesis. The Hippo-Yes-associated protein (Hippo/YAP) pathway is an important regulator of cell growth in a cell density-dependent manner. However, how Hippo signaling senses cell density in this context remains elusive. Here, we report that high cell density induced the phosphorylation of spectrin Ī± chain, nonerythrocytic 1 (SPTAN1), a plasma membrane-stabilizing protein, to recruit NUMB endocytic adaptor protein isoforms 1 and 2 (NUMB1/2), which further sequestered microtubule affinity-regulating kinases (MARKs) in the plasma membrane and rendered them inaccessible for phosphorylation and inhibition of the Hippo kinases sterile 20-like kinases MST1 and MST2 (MST1/2). WW45 interaction with MST1/2 was thereby enhanced, resulting in the activation of Hippo signaling to block YAP activity for cell contact inhibition. Importantly, low cell density led to SPTAN1 dephosphorylation and NUMB cytoplasmic location, along with MST1/2 inhibition and, consequently, YAP activation. Moreover, double KO of NUMB and WW45 in the liver led to appreciable organ enlargement and rapid tumorigenesis. Interestingly, NUMB isoforms 3 and 4, which have a truncated phosphotyrosine-binding (PTB) domain and are thus unable to interact with phosphorylated SPTAN1 and activate MST1/2, were selectively upregulated in liver cancer, which correlated with YAP activation. We have thus revealed a SPTAN1/NUMB1/2 axis that acts as a cell density sensor to restrain cell growth and oncogenesis by coupling external cell-cell contact signals to intracellular Hippo signaling
Polymorphisms of XRCC4 are involved in reduced colorectal cancer risk in Chinese schizophrenia patients
<p>Abstract</p> <p>Background</p> <p>Genetic factors related to the regulation of apoptosis in schizophrenia patients may be involved in a reduced vulnerability to cancer. XRCC4 is one of the potential candidate genes associated with schizophrenia which might induce colorectal cancer resistance.</p> <p>Methods</p> <p>To examine the genetic association between colorectal cancer and schizophrenia, we analyzed five SNPs (rs6452526, rs2662238, rs963248, rs35268, rs2386275) covering ~205.7 kb in the region of XRCC4.</p> <p>Results</p> <p>We observed that two of the five genetic polymorphisms showed statistically significant differences between 312 colorectal cancer subjects without schizophrenia and 270 schizophrenia subjects (rs6452536, p = 0.004, OR 0.61, 95% CI 0.44-0.86; rs35268, p = 0.028, OR 1.54, 95% CI 1.05-2.26). Moreover, the haplotype which combined all five markers was the most significant, giving a global <it>p </it>= 0.0005.</p> <p>Conclusions</p> <p>Our data firstly indicate that XRCC4 may be a potential protective gene towards schizophrenia, conferring reduced susceptibility to colorectal cancer in the Han Chinese population.</p
The Sihailongwan Maar Lake, northeastern China as a candidate Global Boundary Stratotype Section and Point for the Anthropocene Series
Sihailongwan Maar Lake, located in Northeast China, is a candidate Global boundary Stratotype Section and Point (GSSP) for demarcation of the Anthropocene. The lakeās varved sediments are formed by alternating allogenic atmospheric inputs and authigenic lake processes and store a record of environmental and human impacts at a continental-global scale. Varve counting and radiometric dating provided a precise annual-resolution sediment chronology for the site. Time series records of radioactive (239,240Pu, 129I and soot 14C), chemical (spheroidal carbonaceous particles, polycyclic aromatic hydrocarbons, soot, heavy metals, Ī“13C, etc), physical (magnetic susceptibility and grayscale) and biological (environmental DNA) indicators all show rapid changes in the mid-20th century, coincident with clear lithological changes of the sediments. Statistical analyses of these proxies show a tipping point in 1954 CE. 239,240Pu activities follow a typical unimodal globally-distributed profile, and are proposed as the primary marker for the Anthropocene. A rapid increase in 239,240Pu activities at 88āmm depth in core SHLW21-Fr-13 (1953 CE) is synchronous with rapid changes of other anthropogenic proxies and the Great Acceleration, marking the onset of the Anthropocene. The results indicate that Sihailongwan Maar Lake is an ideal site for the Anthropocene GSSP
- ā¦