47,000 research outputs found
Breakdown of adiabatic invariance in spherical tokamaks
Thermal ions in spherical tokamaks have two adiabatic invariants: the
magnetic moment and the longitudinal invariant. For hot ions, variations in
magnetic-field strength over a gyro period can become sufficiently large to
cause breakdown of the adiabatic invariance. The magnetic moment is more
sensitive to perturbations than the longitudinal invariant and there exists an
intermediate regime, super-adiabaticity, where the longitudinal invariant
remains adiabatic, but the magnetic moment does not. The motion of
super-adiabatic ions remains integrable and confinement is thus preserved.
However, above a threshold energy, the longitudinal invariant becomes
non-adiabatic too, and confinement is lost as the motion becomes chaotic. We
predict beam ions in present-day spherical tokamaks to be super-adiabatic but
fusion alphas in proposed burning-plasma spherical tokamaks to be
non-adiabatic.Comment: 6 pages, 8 figure
Orbital elements of barium stars formed through a wind accretion scenario
Taking the total angular momentum conservation in place of the tangential
momentum conservation, and considering the square and higher power terms of
orbital eccentricity e, the changes of orbital elements of binaries are
calculated for wind accretion scenario. These new equations are used to
quantitatively explain the observed (e,logP) properties of normal G, K giants
and barium stars. Our results reflect the evolution from G, K giant binaries to
barium binaries, moreover, the barium stars with longer orbital periods P>1600
days may be formed by accreting part of the ejecta from the intrinsic AGB stars
through wind accretion scenario.Comment: 7 pages, LaTex, 4 PS figures and 1 table included, accepted for
publication in A &
Many-body Green's function theory for electron-phonon interactions: ground state properties of the Holstein dimer
We study ground-state properties of a two-site, two-electron Holstein model
describing two molecules coupled indirectly via electron-phonon interaction by
using both exact diagonalization and self-consistent diagrammatic many-body
perturbation theory. The Hartree and self-consistent Born approximations used
in the present work are studied at different levels of self-consistency. The
governing equations are shown to exhibit multiple solutions when the
electron-phonon interaction is sufficiently strong whereas at smaller
interactions only a single solution is found. The additional solutions at
larger electron-phonon couplings correspond to symmetry-broken states with
inhomogeneous electron densities. A comparison to exact results indicates that
this symmetry breaking is strongly correlated with the formation of a bipolaron
state in which the two electrons prefer to reside on the same molecule. The
results further show that the Hartree and partially self-consistent Born
solutions obtained by enforcing symmetry do not compare well with exact
energetics, while the fully self-consistent Born approximation improves the
qualitative and quantitative agreement with exact results in the same symmetric
case. This together with a presented natural occupation number analysis
supports the conclusion that the fully self-consistent approximation describes
partially the bipolaron crossover. These results contribute to better
understanding how these approximations cope with the strong localizing effect
of the electron-phonon interaction.Comment: 9 figures, corrected typo
Structural transitions in biomolecules - a numerical comparison of two approaches for the study of phase transitions in small systems
We compare two recently proposed methods for the characterization of phase
transitions in small systems. The usefulness of these techniques is evaluated
for the case of structural transition in alanine-based peptides.Comment: Accepted for publication in Int. J. Mol. Sci., to appear in a special
issue devoted to R.S. Berr
- …