36 research outputs found

    HOX11L2/TLX3 is transcriptionally activated through T-cell regulatory elements downstream of BCL11B as a result of the t(5;14)(q35;q32).

    Get PDF
    International audienceThe t(5;14)(q35;q32) chromosomal translocation is specifically observed in up to 20% of childhood T-cell acute lymphoblastic leukemia (T-ALL). It affects the BCL11B/CTIP2 locus on chromosome 14 and the RANBP17-TLX3/HOX11L2 region on chromosome 5. It leads to ectopic activation of TLX3/HOX11L2. To investigate the reasons of the association between t(5;14) and T-ALL, we isolated the translocation breakpoints in 8 t(5;14) patients. Sequence analyses did not involve recombinase activity in the genesis of the translocation. We used DNAse1 hypersensitive experiments to locate transcriptional regulatory elements downstream of BCL11B. By transient transfection experiments, 2 of the 6 regions demonstrated cis-activation properties in T cells and were also effective on the TLX3 promoter. Our data indicate that the basis of the specific association between t(5;14) and T-ALL lies on the juxtaposition of TLX3 to long-range cis-activating regions active during T-cell differentiation

    Senescence is a Spi1-induced anti-proliferative mechanism in primary hematopoietic cells

    Get PDF
    International audienceTranscriptional deregulation caused by epigenetic or genetic alterations is a major cause of leukemic transformation. The Spi1/PU.1 transcription factor is a key regulator of many steps of hematopoiesis, and limits self-renewal of hematopoietic stem cells. The deregulation of its expression or activity contributes to leukemia, in which Spi1 can be either an oncogene or a tumor suppressor. Herein we explored whether cellular senescence, an anti-tumoral pathway that restrains cell proliferation, is a mechanism by which Spi1 limits hematopoietic cell expansion, and thus prevents the development of leukemia. We show that Spi1 overexpression triggers cellular senescence both in primary fibroblasts and hematopoietic cells. Erythroid and myeloid lineages are both prone to Spi1-induced senescence. In hematopoietic cells, Spi1-induced senescence requires its DNA-binding activity and a functional p38MAPK14 pathway but is independent of a DNA-damage response. In contrast, in fibroblasts, Spi1-induced senescence is triggered by a DNA-damage response. Importantly, using our well-established Spi1 transgenic leukemia mouse model, we demonstrate that Spi1 overexpression also induces senescence in erythroid progenitors of the bone marrow in vivo before the onset of the pre-leukemic phase of erythroleukemia. Remarkably, the senescence response is lost during the progression of the disease and erythroid blasts do not display a higher expression of Dec1 and CDKN1A, two of the induced senescence markers in young animals. These results bring indirect evidence that leukemia develops from cells which have bypassed Spi1-induced senescence. Overall, our results reveal senescence as a Spi1-induced anti-proliferative mechanism that may be a safeguard against the development of acute myeloid leukemia

    The Src tyrosine kinase Hck is required for Tel-Abl- but not for Tel-Jak2-induced cell transformation.

    No full text
    Tel-Abl and Tel-Jak2 are fusion proteins associated with human haematologic neoplasms. They possess constitutive tyrosine kinase activity and activate common downstream signalling pathways like Stat-5, PI3-K/Akt, Ras/MapK and NF-kappaB. In this study, we showed the specific requirement of Src family members for the Tel-Abl-mediated cell growth, activation of Stat5, PI3-K/Akt and Ras/MapK while dispensable for Tel-Jak2. Hck was found strongly phosphorylated in Tel-Abl-expressing Ba/F3 cells and sensitive to imatinib mesylate treatment, providing evidence that Hck is a target of Tel-Abl tyrosine kinase activity. Overexpression of a kinase dead form of Hck inhibits the proliferation of Ba/F3 cells expressing Tel-Abl as the phosphorylation of Akt and Erk1/2. These results argue for an important role of Hck in Tel-Abl oncogenic signalling

    Involvement of the NF-κB pathway in the transforming properties of the TEL-Jak2 leukemogenic fusion protein

    Get PDF
    International audienceConstitutively active tyrosine kinases are frequently expressed in various types of human leukemias as the result of chromosomal translocations. The TEL-Jak2 fusion oncoprotein possesses transforming properties in both animal and cellular models, that are tightly dependent on Stat5 activation. In the IL-3-independent TEL-Jak2-transformed Ba/F3 cells, activation of the PI-3K/Akt pathway appears essential to cell proliferation. Here we report a sustained activation of NF-kappaB factors in Ba/F3 cells, which inhibition dramatically impairs cell viability, indicating that NF-kappaB signaling exerts a major role in the anti-apoptotic activities of TEL-Jak2 oncoprotein

    The TEL-Jak2 oncoprotein induces Socs1 expression and altered cytokine response in Ba/F3 cells

    No full text
    International audienceThe leukemia-associated TEL-Jak2 fusion protein possesses a constitutive tyrosine kinase activity and transforming properties in hematopoietic cell lines and animal models. In the murine pro-B Ba/F3 cell line, this fusion constitutively activates the Signal Transducer and Activator of Transcription 5 (Stat5) factors and, as a consequence, induces the sustained expression of various Stat5-target genes including the Cytokine Inducible SH2-containing protein (Cis) gene, which codes for a member of the Suppressor of Cytokine Signaling (Socs) protein family. In TEL-Jak2-transformed Ba/F3 cells, we also observed the upregulation of the Socs1 gene, whose product has been reported to negatively regulate the Jak kinase activity. In transient transfection experiments, Socs1 physically interacts with TEL-Jak2 and interferes with the TEL-Jak2-induced phosphorylation and activation of Stat5 factors, probably through the Socs1-induced proteasome-mediated degradation of the fusion protein. Interestingly, TEL-Jak2-expressing Ba/F3 cells were found to be resistant to the anti-proliferative activities of gamma interferon (IFN-gamma) seemingly as a consequence of Socs1 constitutive expression. These results indicate that the Socs1-dependent cytokine feedback loop, although active, is bypassed by the TEL-Jak2 fusion, but may play a role in the leukemogenic process by altering the cytokine responses of the leukemic cells. Our results also suggest that Socs1 plays a role in shutting down the signaling from the normally activated Jak2 kinase by inducing its proteasome-dependent degradation

    Activating mutations in human acute megakaryoblastic leukemia

    Full text link
    Oncogenic activation of tyrosine kinase signaling pathway is recurrent in human leukemia. To gain insight into the oncogenic process leading to acute megakaryoblastic leukemia (AMKL), we performed sequence analyses of a subset of oncogenes known to be activated in human myeloid and myeloproliferative disorders. In a series of human AMKL samples from both Down syndrome and non-Down syndrome patients, mutations were identified within KIT, FLT3, JAK2, JAK3, and MPL genes, with a higher frequency in DS than in non-DS patients. The novel mutations were analyzed using BaF3 cells, showing that JAK3 mutations were activating mutations. Finally, we report a novel constitutively active MPL mutant, MPLT487A, observed in a non-Down syndrome childhood AMKL that induces a myeloproliferative disease in mouse bone marrow transplantation assay
    corecore