160 research outputs found
Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans
Background: Common genetic variation at genes that are imprinted and exclusively maternally expressed could explain the apparent maternal-specific inheritance of low birthweight reported in large family pedigrees. We identified ten single nucleotide polymorphisms ( SNPs) in H19, and we genotyped three of these SNPs in families from the contemporary ALSPAC UK birth cohort ( 1,696 children, 822 mothers and 661 fathers) in order to explore associations with size at birth and cord blood IGF- II levels. Results: Both offspring's and mother's H19 2992C> T SNP genotypes showed associations with offspring birthweight ( P = 0.03 to P = 0.003) and mother's genotype was also associated with cord blood IGF-II levels ( P = 0.0003 to P = 0.0001). The offspring genotype association with birthweight was independent of mother's genotype ( P = 0.01 to P = 0.007). However, mother's untransmitted H19 2992T allele was also associated with larger birthweight ( P = 0.04) and higher cord blood IGF-II levels ( P = 0.002), suggesting a direct effect of mother's genotype on placental IGF-II expression and fetal growth. The association between mother's untransmitted allele and cord blood IGF-II levels was more apparent in offspring of first pregnancies than subsequent pregnancies ( P-interaction = 0.03). Study of the independent Cambridge birth cohort with available DNA in mothers (N = 646) provided additional support for mother's H19 2992 genotype associations with birthweight ( P = 0.04) and with mother's glucose levels ( P = 0.01) in first pregnancies. Conclusion: The common H19 2992T allele, in the mother or offspring or both, may confer reduced fetal growth restraint, as indicated by associations with larger offspring birth size, higher cord blood IGF-II levels, and lower compensatory early postnatal catch-up weight gain, that are more evident among mother's smaller first-born infants
Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort
Data from epidemiological and animal model studies suggest that nutrition during pregnancy may affect the health status of subsequent generations. These transgenerational effects are now being explained by disruptions at the level of the epigenetic machinery. Besides in vitro environmental exposures, the possible impact on the reprogramming of methylation profiles at imprinted genes at a much earlier time point, such as during spermatogenesis or oogenesis, has not previously been considered. In this study, our aim was to determine associations between preconceptional obesity and DNA methylation profiles in the offspring, particularly at the differentially methylated regions (DMRs) of the imprinted Insulin-like Growth Factor 2 (IGF2) gene
Is Lamarckian evolution relevant to medicine?
BACKGROUND: 200 years have now passed since Darwin was born and scientists around the world are celebrating this important anniversary of the birth of an evolutionary visionary. However, the theories of his colleague Lamarck are treated with considerably less acclaim. These theories centre on the tendency for complexity to increase in organisms over time and the direct transmission of phenotypic traits from parents to offspring. DISCUSSION: Lamarckian concepts, long thought of no relevance to modern evolutionary theory, are enjoying a quiet resurgence with the increasing complexity of epigenetic theories of inheritance. There is evidence that epigenetic alterations, including DNA methylation and histone modifications, are transmitted transgenerationally, thus providing a potential mechanism for environmental influences to be passed from parents to offspring: Lamarckian evolution. Furthermore, evidence is accumulating that epigenetics plays an important role in many common medical conditions. SUMMARY: Epigenetics allows the peaceful co-existence of Darwinian and Lamarckian evolution. Further efforts should be exerted on studying the mechanisms by which this occurs so that public health measures can be undertaken to reverse or prevent epigenetic changes important in disease susceptibility. Perhaps in 2059 we will be celebrating the anniversary of both Darwin and Lamarck
Evo-devo of human adolescence: beyond disease models of early puberty
Despite substantial heritability in pubertal development, much variation remains to be explained, leaving room for the influence of environmental factors to adjust its phenotypic trajectory in the service of fitness goals. Utilizing evolutionary development biology (evo-devo), we examine adolescence as an evolutionary life-history stage in its developmental context. We show that the transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, other environmental cues, social needs of adolescence and maturation toward youth and adulthood. Using the evolutionary theory of socialization, we show that familial psychosocial stress fosters a fast life history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. Here we explore implications of an evolutionary-developmental-endocrinological-anthropological framework for theory building, while illuminating new directions for research
Detection of Transgenerational Spermatogenic Inheritance of Adult Male Acquired CNS Gene Expression Characteristics Using a Drosophila Systems Model
Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ) induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F1 adults after treating F0 adult males with PTZ and of F2 adults resulting from a cross between F1 males and normal females. Surprisingly, microarray clustering showed F1 male profile as closest to F1 female and F0 male profile closest to F2 male. Differentially expressed genes in F1 males, F1 females and F2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F2 males. Next, we generated microarray expression profiles of adult testis from F0 and F1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying the phenomenon. The finding that adult acquired transcriptomic alteration in soma is spermatogenically inherited across generations has potential implications in human health and evolution
A Statistical Design for Testing Transgenerational Genomic Imprinting in Natural Human Populations
Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans
Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens
Background: Environmental challenges may affect both the exposed individuals and their offspring. We investigated possible adaptive aspects of such cross-generation transmissions, and hypothesized that chronic unpredictable food access would cause chickens to show a more conservative feeding strategy and to be more dominant, and that these adaptations would be transmitted to the offspring. Methodology/Principal Findings: Parents were raised in an unpredictable (UL) or in predictable diurnal light rhythm (PL, 12:12 h light:dark). In a foraging test, UL birds pecked more at freely available, rather than at hidden and more attractive food, compared to birds from the PL group. Female offspring of UL birds, raised in predictable light conditions without parental contact, showed a similar foraging behavior, differing from offspring of PL birds. Furthermore, adult offspring of UL birds performed more food pecks in a dominance test, showed a higher preference for high energy food, survived better, and were heavier than offspring of PL parents. Using cDNA microarrays, we found that the differential brain gene expression caused by the challenge was mirrored in the offspring. In particular, several immunoglobulin genes seemed to be affected similarly in both UL parents and their offspring. Estradiol levels were significantly higher in egg yolk from UL birds, suggesting one possible mechanism for these effects. Conclusions/Significance: Our findings suggest that unpredictable food access caused seemingly adaptive responses in feeding behavior, which may have been transmitted to the offspring by means of epigenetic mechanisms, including regulation of immune genes. This may have prepared the offspring for coping with an unpredictable environment. Citation: Nätt D, Lindqvist N, Stranneheim H, Lundeberg J, Torjesen PA, et al. (2009) Inheritance of Acquired Behaviour Adaptations and Brain Gene Expression in Chickens. PLoS ONE 4(7): e6405. doi:10.1371/journal.pone.0006405 Editor: Tom Pizzari, University of Oxford, United Kingdom Received: March 26, 2009; Accepted: June 30, 2009; Published: July 28, 2009 Copyright: © 2009 Nätt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This project was funded by the Swedish Research Council (VR; www.vr.se; grant nrs 50280101 and 50280102) and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas; www.formas.se; grant no 221-2005-270). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the mauscript. Competing interests: The authors have declared that no competing interests exist. Original Publication:Daniel Nätt, Niclas Lindqvist, Henrik Stranneheim, Joakim Lundeberg, Peter A. Torjesen and Per Jensen, Inheritance of Acquired Behaviour Adaptions and Brain Gene Expression in Chickens, 2009, PLoS ONE, (4), 7, e6405.http://dx.doi.org/10.1371/journal.pone.0006405Copyright: Author
Paternal Body Mass Index (BMI) Is Associated with Offspring Intrauterine Growth in a Gender Dependent Manner
Background: Environmental alternations leading to fetal programming of cardiovascular diseases in later life have been attributed to maternal factors. However, animal studies showed that paternal obesity may program cardio-metabolic diseases in the offspring. In the current study we tested the hypothesis that paternal BMI may be associated with fetal growth. Methods and Results: We analyzed the relationship between paternal body mass index (BMI) and birth weight, ultrasound parameters describing the newborn’s body shape as well as parameters describing the newborns endocrine system such as cortisol, aldosterone, renin activity and fetal glycated serum protein in a birth cohort of 899 father/mother/child triplets. Since fetal programming is an offspring sex specific process, male and female offspring were analyzed separately. Multivariable regression analyses considering maternal BMI, paternal and maternal age, hypertension during pregnancy, maternal total glycated serum protein, parity and either gestational age (for birth weight) or time of ultrasound investigation (for ultrasound parameters) as confounding showed that paternal BMI is associated with growth of the male but not female offspring. Paternal BMI correlated with birth parameters of male offspring only: birth weight; biparietal diameter, head circumference; abdominal diameter, abdominal circumference; and pectoral diameter. Cortisol was likewise significantly correlated with paternal BMI in male newborns only
The biological basis and clinical significance of hormonal imprinting, an epigenetic process
The biological phenomenon, hormonal imprinting, was named and defined by us (Biol Rev, 1980, 55, 47-63) 30 years ago, after many experimental works and observations. Later, similar phenomena were also named to epigenetic imprinting or metabolic imprinting. In the case of hormonal imprinting, the first encounter between a hormone and its developing target cell receptor—usually at the perinatal period—determines the normal receptor-hormone connection for life. However, in this period, molecules similar to the target hormone (members of the same hormone family, synthetic drugs, environmental pollutants, etc), which are also able to bind to the receptor, provoke faulty imprinting also with lifelong—receptorial, behavioral, etc.,—consequences. Faulty hormonal imprinting could also be provoked later in life in continuously dividing cells and in the brain. Faulty hormonal imprinting is a disturbance of gene methylation pattern, which is epigenenetically inherited to the further generations (transgenerational imprinting). The absence of the normal or the presence of false hormonal imprinting predispose to or manifested in different diseases (e.g., malignant tumors, metabolic syndrome) long after the time of imprinting or in the progenies
- …