395 research outputs found
Strong-Coupling Calculation of Fluctuation Pressure of a Membrane Between Walls
We calculate analytically the proportionality constant in the pressure law of
a membrane between parallel walls from the strong-coupling limit of variational
perturbation theory up to third order. Extrapolating the zeroth to third
approximations to infinity yields the pressure constant alpha=0.0797149. This
result lies well within the error bounds of the most accurate available
Monte-Carlo result 0.0798 +- 0.0003.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper also at http://www.physik.fu-berlin.de/~kleinert/28
Two-period duopolies with forward markets
We experimentally consider a dynamic multi-period Cournot duopoly with a simultaneous option to manage financial risk and a real option to delay supply. The first option allows players to manage risk before uncertainty is realized, while the second allows managing risk after realization. In our setting, firms face a strategic dilemma: They must weigh the advantages of dealing with risk exposure against the disadvantages of higher competition. In theory, firms make strategic use of the hedging component, enhancing competition. Our experimental results support this theory, suggesting that hedging increases competition and negates duopoly profits even in a simultaneous setting
Generating Functionals for Harmonic Expectation Values of Paths with Fixed End Points. Feynman Diagrams for Nonpolynomial Interactions
We introduce a general class of generating functionals for the calculation of
quantum-mechanical expectation values of arbitrary functionals of fluctuating
paths with fixed end points in configuration or momentum space. The generating
functionals are calculated explicitly for harmonic oscillators with
time-dependent frequency, and used to derive a smearing formulas for
correlation functions of polynomial and nonpolynomials functions of
time-dependent positions and momenta. These formulas summarize the effect of
thermal and quantum fluctuations, and serve to derive generalized Wick rules
and Feynman diagrams for perturbation expansions of nonpolynomial interactions.Comment: Author Information under
http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of
paper also at http://www.physik.fu-berlin.de/~kleinert/28
- …