73 research outputs found

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: a tomographic analysis of structure growth and expansion rate from anisotropic galaxy clustering

    Get PDF
    We perform a tomographic analysis of structure growth and expansion rate from the anisotropic galaxy clustering of the combined sample of Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12, which covers the redshift range of 0.2<z<0.750.2<z<0.75. In order to extract the redshift information of anisotropic galaxy clustering, we analyse this data set in nine overlapping redshift slices in configuration space and perform the joint constraints on the parameters (DV,FAP,fσ8)(D_V, F_{\mathrm{AP}}, f\sigma_8) using the correlation function multipoles. The analysis pipeline is validated using the MultiDark-Patchy mock catalogues. We obtain a measurement precision of 1.5%2.9%1.5\%-2.9\% for DVD_V, 5.2%9%5.2\%-9\% for FAPF_{\mathrm{AP}} and 13.3%24%13.3\%-24\% for fσ8f \sigma_8, depending on the effective redshift of the slices. We report a joint measurement of (DV,FAP,fσ8)(D_V, F_{\mathrm{AP}}, f\sigma_8) with the full covariance matrix in nine redshift slices. We use our joint BAO and RSD measurement combined with external datasets to constrain the gravitational growth index γ\gamma, and find γ=0.656±0.057\gamma=0.656 \pm 0.057, which is consistent with the Λ\LambdaCDM prediction within 95\% CL.Comment: 8 pages, 8 figures, 2 tables, accepted for publication MNRAS. The measured results including the full covariance matrices are made available at https://github.com/ytcosmo/TomoBAORSD and tomographic clustering data used in this work is available at https://sdss3.org//science/boss_publications.ph

    Hybrid-bias and displacement emulators for field-level modelling of galaxy clustering in real and redshift space

    Full text link
    Recently, hybrid bias expansions have emerged as a powerful approach to modelling the way in which galaxies are distributed in the Universe. Similarly, field-level emulators have recently become possible thanks to advances in machine learning and NN-body simulations. In this paper we explore whether both techniques can be combined to provide a field-level model for the clustering of galaxies in real and redshift space. Specifically, here we will demonstrate that field-level emulators are able to accurately predict all the operators of a 2nd2^{\rm nd}-order hybrid bias expansion. The precision achieved in real and redshift space is similar to that obtained for the nonlinear matter power spectrum. This translates to roughly 1-2\% precision for the power spectrum of a BOSS and a Euclid-like galaxy sample up to k0.6h1k\sim 0.6 h^{-1}Mpc. Remarkably, this combined approach also delivers precise predictions for field-level galaxy statistics. Despite all these promising results, we detect several areas where further improvements are required. Therefore, this work serves as a road-map for the developments required for a more complete exploitation of upcoming large-scale structure surveys.Comment: 13 pages, 9 figure

    UNIT project: Universe NN-body simulations for the Investigation of Theoretical models from galaxy surveys

    Full text link
    We present the UNIT NN-body cosmological simulations project, designed to provide precise predictions for nonlinear statistics of the galaxy distribution. We focus on characterizing statistics relevant to emission line and luminous red galaxies in the current and upcoming generation of galaxy surveys. We use a suite of precise particle mesh simulations (FastPM) as well as with full NN-body calculations with a mass resolution of 1.2×109h1\sim 1.2\times10^9\,h^{-1}M_{\odot} to investigate the recently suggested technique of Angulo & Pontzen 2016 to suppress the variance of cosmological simulations We study redshift space distortions, cosmic voids, higher order statistics from z=2z=2 down to z=0z=0. We find that both two- and three-point statistics are unbiased. Over the scales of interest for baryon acoustic oscillations and redshift-space distortions, we find that the variance is greatly reduced in the two-point statistics and in the cross correlation between halos and cosmic voids, but is not reduced significantly for the three-point statistics. We demonstrate that the accuracy of the two-point correlation function for a galaxy survey with effective volume of 20 (h1h^{-1}Gpc)3^3 is improved by about a factor of 40, indicating that two pairs of simulations with a volume of 1 (h1h^{-1}Gpc)3^3 lead to the equivalent variance of \sim150 such simulations. The NN-body simulations presented here thus provide an effective survey volume of about seven times the effective survey volume of DESI or Euclid. The data from this project, including dark matter fields, halo catalogues, and their clustering statistics, are publicly available at http://www.unitsims.org.Comment: 12 pages, 9 figures. This version matches the one accepted by MNRAS. The data from this project are publicly available at: http://www.unitsims.or

    The Bacco Simulation Project: Bacco Hybrid Lagrangian Bias Expansion Model in Redshift Space

    Full text link
    We present an emulator that accurately predicts the power spectrum of galaxies in redshift space as a function of cosmological parameters. Our emulator is based on a 2nd-order Lagrangian bias expansion that is displaced to Eulerian space using cosmological NN-body simulations. Redshift space distortions are then imprinted using the non-linear velocity field of simulated particles and haloes. We build the emulator using a forward neural network trained with the simulations of the BACCO project, which covers an 8-dimensional parameter space including massive neutrinos and dynamical dark energy. We show that our emulator provides unbiased cosmological constraints from the monopole, quadrupole, and hexadecapole of a mock galaxy catalogue that mimics the BOSS-CMASS sample down to nonlinear scales (k0.6k\sim0.6[h/h/Mpc]3^{3}). This work opens up the possibility of robustly extracting cosmological information from small scales using observations of the large-scale structure of the Universe.Comment: 16 pages, 9 figure

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering

    Get PDF
    With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h1h^{-1}Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z=0.59z=0.59, to obtain constraints on the Hubble expansion rate H(z)H(z), the angular-diameter distance DA(z)D_A(z), the normalized growth rate f(z)σ8(z)f(z)\sigma_8(z), and the physical matter density Ωmh2\Omega_mh^2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs\{D_A(0.59)r_{s,fid}/r_s Mpc\rm Mpc, H(0.59)rs/rs,fidH(0.59)r_s/r_{s,fid} kms1Mpc1km s^{-1} Mpc^{-1}, f(0.59)σ8(0.59)f(0.59)\sigma_8(0.59), Ωmh2}\Omega_m h^2\} = {1427±26\{1427\pm26, 97.3±3.397.3\pm3.3, 0.488±0.0600.488 \pm 0.060, 0.135±0.016}0.135\pm0.016\}, where rsr_s is the comoving sound horizon at the drag epoch and rs,fid=147.66r_{s,fid}=147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, ww, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk\Omega_k, is 0.3 per cent. We do not find deviation from flat Λ\LambdaCDM.Comment: 15 pages, 11 figures. The latest version matches and the accepted version by MNRAS. A bug in the first version has been identified and fixed in the new version. We have redone the analysis with newest data (BOSS DR12

    Covariance matrices for variance-suppressed simulations

    Full text link
    Cosmological NN-body simulations provide numerical predictions of the structure of the universe against which to compare data from ongoing and future surveys. The growing volume of the surveyed universe, however, requires increasingly large simulations. It was recently proposed to reduce the variance in simulations by adopting fixed-amplitude initial conditions. This method has been demonstrated not to introduce bias in various statistics, including the two-point statistics of galaxy samples typically used for extracting cosmological parameters from galaxy redshift survey data. However, we must revisit current methods for estimating covariance matrices for these simulations to be sure that we can properly use them. In this work, we find that it is not trivial to construct the covariance matrix analytically, but we demonstrate that EZmock, the most efficient method for constructing mock catalogues with accurate two- and three-point statistics, provides reasonable covariance matrix estimates for variance-suppressed simulations. We further investigate the behavior of the variance suppression by varying galaxy bias, three-point statistics, and small-scale clustering.Comment: 9 pages, 7 figure

    Robustness of cosmic neutrino background detection in the cosmic microwave background

    Get PDF
    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    Sloan Digital Sky Survey IV: mapping the Milky Way, nearby galaxies, and the distant universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median ). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July

    Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe

    Get PDF
    We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratios in the near-infrared. The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey is obtaining spatially resolved spectroscopy for thousands of nearby galaxies (median z0.03z\sim 0.03). The extended Baryon Oscillation Spectroscopic Survey (eBOSS) is mapping the galaxy, quasar, and neutral gas distributions between z0.6z\sim 0.6 and 3.5 to constrain cosmology using baryon acoustic oscillations, redshift space distortions, and the shape of the power spectrum. Within eBOSS, we are conducting two major subprograms: the SPectroscopic IDentification of eROSITA Sources (SPIDERS), investigating X-ray AGNs and galaxies in X-ray clusters, and the Time Domain Spectroscopic Survey (TDSS), obtaining spectra of variable sources. All programs use the 2.5 m Sloan Foundation Telescope at the Apache Point Observatory; observations there began in Summer 2014. APOGEE-2 also operates a second near-infrared spectrograph at the 2.5 m du Pont Telescope at Las Campanas Observatory, with observations beginning in early 2017. Observations at both facilities are scheduled to continue through 2020. In keeping with previous SDSS policy, SDSS-IV provides regularly scheduled public data releases; the first one, Data Release 13, was made available in 2016 July
    corecore