249 research outputs found

    Living with Keratinocytes

    Get PDF
    A feature distinguishing human hematopoietic and epithelial stem cells from other equally fascinating stem cells is perhaps their easier translation into a clinical setting. We have devoted nearly our entire scientific career in trying to turn our understanding of epithelial stem cell biology into something that could help people suffering from virtually untreatable diseases of squamous epithelia. We have done that as a team, together with our numerous students, postdocs, technicians and valuable collaborators, clinicians, regulators, and, lately, industrial partners. We had rewarding successes and burning failures, but we always did our best. This award, given by friends and colleagues deserving it more than us, has been the most important recognition of our work. Below, we summarize our story

    Impact of culture media on primary human corneal endothelial cells derived from old donors

    Get PDF
    : Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs). Although HCEnCs established from young donors are generally more proliferative and maintain a better phenotype, corneas from old donors are more frequently accessible from eye banks due to a lower corneal endothelial cell count than the necessary threshold required for transplantation. In this study, we investigated various culture media to evaluate which one is the most appropriate for stimulating the proliferation while maintaining cell morphology and function of HCEnCs derived from old donors (age >65 years). All experiments were performed on paired research-grade donor corneas, divided for the conditions under investigation in order to minimize the inter-donor variability. Cell morphology as well as expression of specific markers were assessed at both mRNA (CD166, SLC4A11, ATP1A1, COL8A1, α-SMA, CD44, COL1A1, CDKN2A, LAP2A and LAP2B) and protein (ZO-1, α-SMA, Ki67 and LAP2) levels. Results obtained showed how the Dual Media formulation maintained the hexagonal phenotype more efficiently than Single Medium, but cell size gradually increased with passages. In contrast, the Single Medium provided a higher proliferation rate and a prolonged in vitro expansion but acquired an elongated morphology. To summarize, Single medium and Dual media preserve morphology and functional phenotype of HCEnCs from old donor corneas at low passages while maintenance of the same cell features at high passages remains an active area of research. The new insights revealed within this work become particularly relevant considering that the elderly population a) is the main target of corneal endothelial therapy, b) represents the majority of corneal donors. Therefore, the proper expansion of HCEnCs from old donors is essential to develop novel personalised therapeutic strategies and reduce requirement of human corneal tissues globally.Corneal endothelial dysfunction is a major indication for corneal transplantation. However, a global shortage of donor corneal tissues and risks associated with corneal surgeries have prompted exploration of alternative options, including tissue-engineered grafts or cell injection therapy. Nonetheless, these approaches require a controlled culture of primary human corneal endothelial cells (HCEnCs). Although HCEnCs established from young donors are generally more proliferative and maintain a better phenotype, corneas from old donors are more frequently accessible from eye banks due to a lower corneal endothelial cell count than the necessary threshold required for transplantation. In this study, we investigated various culture media to evaluate which one is the most appropriate for stimulating the proliferation while maintaining cell morphology and function of HCEnCs derived from old donors (age >65 years). All experiments were performed on paired research-grade donor corneas, divided for the conditions under investigation in order to minimize the inter-donor variability. Cell morphology as well as expression of specific markers were assessed at both mRNA (CD166, SLC4A11, ATP1A1, COL8A1, α-SMA, CD44, COL1A1, CDKN2A, LAP2A and LAP2B) and protein (ZO-1, α-SMA, Ki67 and LAP2) levels. Results obtained showed how the Dual Media formulation maintained the hexagonal phenotype more efficiently than Single Medium, but cell size gradually increased with passages. In contrast, the Single Medium provided a higher proliferation rate and a prolonged in vitro expansion but acquired an elongated morphology. To summarize, Single medium and Dual media preserve morphology and functional phenotype of HCEnCs from old donor corneas at low passages while maintenance of the same cell features at high passages remains an active area of research. The new insights revealed within this work become particularly relevant considering that the elderly population a) is the main target of corneal endothelial therapy, b) represents the majority of corneal donors. Therefore, the proper expansion of HCEnCs from old donors is essential to develop novel personalised therapeutic strategies and reduce requirement of human corneal tissues globally

    C/EBPδ regulates cell cycle and self-renewal of human limbal stem cells

    Get PDF
    Human limbal stem cells produce transit amplifying progenitors that migrate centripetally to regenerate the corneal epithelium. Coexpression of CCAAT enhancer binding protein δ (C/EBPδ), Bmi1, and ΔNp63α identifies mitotically quiescent limbal stem cells, which generate holoclones in culture. Upon corneal injury, a fraction of these cells switches off C/EBPδ and Bmi1, proliferates, and differentiates into mature corneal cells. Forced expression of C/EBPδ inhibits the growth of limbal colonies and increases the cell cycle length of primary limbal cells through the activity of p27Kip1 and p57Kip2. These effects are reversible; do not alter the limbal cell proliferative capacity; and are not due to apoptosis, senescence, or differentiation. C/EBPδ, but not ΔNp63α, indefinitely promotes holoclone self-renewal and prevents clonal evolution, suggesting that self-renewal and proliferation are distinct, albeit related, processes in limbal stem cells. C/EBPδ is recruited to the chromatin of positively (p27Kip1 and p57Kip2) and negatively (p16INK4A and involucrin) regulated gene loci, suggesting a direct role of this transcription factor in determining limbal stem cell identity

    Navigating Market Authorization: The Path Holoclar Took to Become the First Stem Cell Product Approved in the European Union

    Get PDF
    Gene therapy, cell therapy, and tissue engineering have the potential to revolutionize the treatment of disease and injury. Attaining marketing authorization for such advanced therapy medicinal products (ATMPs) requires a rigorous scientific evaluation by the European Medicines Agencyâauthorization is only granted if the product can fulfil stringent requirements for quality, safety, and efficacy. However, many ATMPs are being provided to patients under alternative means, such as âhospital exemptionâ schemes. Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells), a novel treatment for eye burns, is one of the few ATMPs to have been granted marketing authorization and is the first containing stem cells. This review highlights the differences in standards between an authorized and unauthorized medicinal product, and specifically discusses how the manufacture of Holoclar had to be updated to achieve authorization. The result is that patients will have access to a therapy that is manufactured to high commercial standards, and is supported by robust clinical safety and efficacy data. Stem Cells Translational Medicine 2018;7:146â154

    SOX2 Is a Univocal Marker for Human Oral Mucosa Epithelium Useful in Post-COMET Patient Characterization

    Get PDF
    Total bilateral Limbal Stem Cells Deficiency is a pathologic condition of the ocular surface due to loss or impairment of corneal stem cell function, altering homeostasis of the corneal epithelium. Cultivated Oral Mucosa Epithelial Transplantation (COMET) is the only autologous treatment for this pathology. During the follow-up, a proper characterization of the transplanted oral mucosa on the ocular surface supports understanding the regenerative process. The previously proposed markers for oral mucosa identification (e.g., keratins 3 and 13) are co-expressed by corneal and conjunctival epithelia. Here, we propose a new specific marker to distinguish human oral mucosa from the epithelia of the ocular surface. We compared the transcriptome of holoclones (stem cells) from the human oral mucosa, limbal and conjunctival cultures by microarray assay. High expression of SOX2 identified the oral mucosa vs. cornea and conjunctiva, while PAX6 was highly expressed in corneal and conjunctival epithelia. The transcripts were validated by qPCR, and immunological methods identified the related proteins. Finally, the proposed markers were used to analyze a 10-year follow-up aniridic patient treated by COMET. These findings will support the follow-up analysis of COMET treated patients and help to shed light on the mechanism of corneal repair and regeneration

    From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU

    Get PDF
    In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell based corneal therapy
    • …
    corecore