46 research outputs found

    Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on Taqman genotyping assays

    Get PDF
    The β-thalassemias are genetic disorder caused by more than 200 mutations in the β-globin gene, resulting in a total (β0) or partial (β+) deficit of the globin chain synthesis. The most frequent Mediterranean mutations for β-thalassemia are: β039, β+ VSI-110, β+IVSI-6 and β0IVSI-1. Several molecular techniques for the detection of point mutations have been developed based on the amplification of the DNA target by polymerase chain reaction (PCR), but they could be labor-intensive and technically demanding. On the contrary, Taq- Man® genotyping assays are a simple, sensitive and versatile method suitable for the single nucleotide polymorphism (SNP) genotyping affecting the human β-globin gene. Four Taq- Man® genotyping assays for the most common β-thalassemia mutations present in the Mediterranean area were designed and validated for the genotype characterization of genomic DNA extracted from 94 subjects comprising 25 healthy donors, 33 healthy carriers and 36 β- thalassemia patients. In addition, 15 specimens at late gestation (21-39 gestational weeks) and 11 at early gestation (5-18 gestational weeks) were collected from pregnant women, and circulating cell-free fetal DNAs were extracted and analyzed with these four genotyping assays. We developed four simple, inexpensive and versatile genotyping assays for the postnatal and prenatal identification of the thalassemia mutations β039, β+IVSI-110, β+IVSI-6, β0IVSI-1. These genotyping assays are able to detect paternally inherited point mutations in the fetus and could be efficiently employed for non-invasive prenatal diagnosis of β-globin gene mutations, starting from the 9th gestational week

    P2X receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    P2X receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2X Receptors [46, 134]) have a trimeric topology [118, 132, 177] with two putative TM domains, gating primarily Na+, K+ and Ca2+, exceptionally Cl-. The Nomenclature Subcommittee has recommended that for P2X receptors, structural criteria should be the initial criteria for nomenclature where possible. X-ray crystallography indicates that functional P2X receptors are trimeric and three agonist molecules are required to bind to a single receptor in order to activate it [132, 88, 96, 161]. Native receptors may occur as either homotrimers (e.g. P2X1 in smooth muscle) or heterotrimers (e.g. P2X2:P2X3 in the nodose ganglion [251], P2X1:P2X5 in mouse cortical astrocytes [146], and P2X2:P2X5 in mouse dorsal root ganglion, spinal cord and mid pons [50, 207]. P2X2, P2X4 and P2X7 receptors have been shown to form functional homopolymers which, in turn, activate pores permeable to low molecular weight solutes [229]. The hemi-channel pannexin-1 has been implicated in the pore formation induced by P2X7 [188], but not P2X2 [38], receptor activation

    P2X receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    P2X receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on P2X Receptors [48, 141]) have a trimeric topology [124, 139, 188] with two putative TM domains, gating primarily Na+, K+ and Ca2+, exceptionally Cl-. The Nomenclature Subcommittee has recommended that for P2X receptors, structural criteria should be the initial criteria for nomenclature where possible. X-ray crystallography indicates that functional P2X receptors are trimeric and three agonist molecules are required to bind to a single receptor in order to activate it [139, 93, 101, 170]. Native receptors may occur as either homotrimers (e.g. P2X1 in smooth muscle) or heterotrimers (e.g. P2X2:P2X3 in the nodose ganglion [265], P2X1:P2X5 in mouse cortical astrocytes [155], and P2X2:P2X5 in mouse dorsal root ganglion, spinal cord and mid pons [52, 221]. P2X2, P2X4 and P2X7 receptor activation can also lead to influx of large cationic molecules, such as NMDG, Yo-Pro, ethidium or propidium iodide [200]. The hemi-channel pannexin-1 was initially implicated in the action of P2X7 [201], but not P2X2, receptors [40], but this interpretation is probably misleading. Convincing evidence now supports the view that the activated P2X7 receptor is immediately permeable to large cationic molecules, but influx proceeds at a much slower pace than that of the small cations Na+, K+, and Ca2+ [64]

    Host genetics impact on SARS-CoV-2 vaccine-induced immunoglobulin levels and dynamics: The role of TP53, ABO, APOE, ACE2, HLA-A, and CRP genes

    Get PDF
    Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations

    Increased Level of Extracellular ATP at Tumor Sites: In Vivo Imaging with Plasma Membrane Luciferase

    Get PDF
    There is growing awareness that tumour cells build up a "self-advantageous" microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. METHODOLOGY/PRINCIPAL FINDINGS: Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. CONCLUSIONS/SIGNIFICANCE: Our results show that ATP in the tumour interstitium is in the hundreds micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling

    Non-invasive fetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR

    Get PDF
    BACKGROUND: Fetal sex determination is useful for families at risk of X-linked disorders, such as Duchenne muscular dystrophy, adrenal hypoplasia, hemophilia. At first, this could be obtained through invasive procedures such as amniocentesis and chorionic villus sampling, having a 1% risk of miscarriage. Since the discovery of cell-free fetal DNA (cffDNA) in maternal plasma, noninvasive prenatal testing permits the early diagnosis of fetal sex through analysis of cffDNA. However, the low amount of cffDNA relative to circulating maternal DNA requires highly sensitive molecular techniques in order to perform noninvasive prenatal diagnosis. In this context we employed droplet digital PCR (ddPCR) in order to evaluate the earliest possible fetal sex determination from circulating DNA extracted from plasma of pregnant women at different gestational ages. METHODS: We identified the fetal sex on cffDNA extracted from 29 maternal plasma samples at early gestational ages, several of them not suitable for qPCR determination, using ddPCR designed for SRY gene target. RESULTS: All maternal plasma samples were determined correctly for SRY gene target using ddPCR even at very early gestational age (prior to 7 weeks). CONCLUSIONS: The ddPCR is a robust, efficient and reliable technology for the earliest possible fetal sex determination from maternal plasma

    A Novel Recombinant Plasma Membrane-targeted Luciferase Reveals a New Pathway for ATP Secretion

    No full text
    ATP is emerging as an ubiquitous extracellular messenger. However, measurement of ATP concentrations in the pericellular space is problematic. To this aim, we have engineered a firefly luciferase-folate receptor chimeric protein that retains the N-terminal leader sequence and the C-terminal GPI anchor of the folate receptor. This chimeric protein, named plasma membrane luciferase (pmeLUC), is targeted and localized to the outer aspect of the plasma membrane. PmeLUC is sensitive to ATP in the low micromolar to millimolar level and is insensitive to all other nucleotides. To identify pathways for nonlytic ATP release, we transfected pmeLUC into cells expressing the recombinant or native P2X(7) receptor (P2X(7)R). Both cell types release large amounts of ATP (100–200 μM) in response to P2X(7)R activation. This novel approach unveils a hitherto unsuspected nonlytic pathway for the release of large amounts of ATP that might contribute to spreading activation and recruitment of immune cells at inflammatory sites

    CHIMERIC PROTEINS FOR MEASURING ATP CONCENTRATIONS IN PERICELLULAR SPACE AND RELATED SCREENING METHOD

    No full text
    The invention relates to luminescent chimeric proteins comprising a first N-terminal protein sequence, a second protein sequence and a third C-terminal protein sequence wherein: (i) said first and said third protein sequence are a leader sequence and an anchor sequence belonging to at least a receptor localized on a plasma membrane site; (ii) said second protein sequence encodes for the full-length or partial sequence of a photoprotein and is inserted in frame between said first and said third sequence (i); said chimeric protein being addressed to said plasma membrane site of the cell wherein it is expressed

    CHIMERIC PROTEINS FOR MEASURING ATP CONCENTRATIONS IN PERICELLULAR SPACE AND RELATED SCREENING METHOD

    No full text
    none5The invention relates to luminescent chimeric proteins comprising a first N-terminal protein sequence, a second protein sequence and a third C-terminal protein sequence wherein: (i) said first and said third protein sequence are a leader sequence and an anchor sequence belonging to at least a receptor localized on a plasma membrane site; (ii) said second protein sequence encodes for the full-length or partial sequence of a photoprotein and is inserted in frame between said first and said third sequence (i); said chimeric protein being addressed to said plasma membrane site of the cell wherein it is expressed.noneDI VIRGILIO FRANCESCO;FALZONI SIMONETTA;PELLEGATTI PATRIZIA;PINTON PAOLO;R. RIZZUTODI VIRGILIO, Francesco; Falzoni, Simonetta; Pellegatti, Patrizia; Pinton, Paolo; Rizzuto, Rosari
    corecore