194 research outputs found
Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering
We propose a new pattern recognition method that is able to reconstruct the
3D structure of the active part of a fault network using the spatial location
of earthquakes. The method is a generalization of the so-called dynamic
clustering method, that originally partitions a set of datapoints into
clusters, using a global minimization criterion over the spatial inertia of
those clusters. The new method improves on it by taking into account the full
spatial inertia tensor of each cluster, in order to partition the dataset into
fault-like, anisotropic clusters. Given a catalog of seismic events, the output
is the optimal set of plane segments that fits the spatial structure of the
data. Each plane segment is fully characterized by its location, size and
orientation. The main tunable parameter is the accuracy of the earthquake
localizations, which fixes the resolution, i.e. the residual variance of the
fit. The resolution determines the number of fault segments needed to describe
the earthquake catalog, the better the resolution, the finer the structure of
the reconstructed fault segments. The algorithm reconstructs successfully the
fault segments of synthetic earthquake catalogs. Applied to the real catalog
constituted of a subset of the aftershocks sequence of the 28th June 1992
Landers earthquake in Southern California, the reconstructed plane segments
fully agree with faults already known on geological maps, or with blind faults
that appear quite obvious on longer-term catalogs. Future improvements of the
method are discussed, as well as its potential use in the multi-scale study of
the inner structure of fault zones
Clust-IT:Clustering-Based Intrusion Detection in IoT Environments
Low-powered and resource-constrained devices are forming a greater part of our smart networks. For this reason, they have recently been the target of various cyber-attacks. However, these devices often cannot implement traditional intrusion detection systems (IDS), or they can not produce or store the audit trails needed for inspection. Therefore, it is often necessary to adapt existing IDS systems and malware detection approaches to cope with these constraints. We explore the application of unsupervised learning techniques, specifically clustering, to develop a novel IDS for networks composed of low-powered devices. We describe our solution, called Clust-IT (Clustering of IoT), to manage heterogeneous data collected from cooperative and distributed networks of connected devices and searching these data for indicators of compromise while remaining protocol agnostic. We outline a novel application of OPTICS to various available IoT datasets, composed of both packet and flow captures, to demonstrate the capabilities of the proposed techniques and evaluate their feasibility in developing an IoT IDS
Cosmic Swarms: A search for Supermassive Black Holes in the LISA data stream with a Hybrid Evolutionary Algorithm
We describe a hybrid evolutionary algorithm that can simultaneously search
for multiple supermassive black hole binary (SMBHB) inspirals in LISA data. The
algorithm mixes evolutionary computation, Metropolis-Hastings methods and
Nested Sampling. The inspiral of SMBHBs presents an interesting problem for
gravitational wave data analysis since, due to the LISA response function, the
sources have a bi-modal sky solution. We show here that it is possible not only
to detect multiple SMBHBs in the data stream, but also to investigate
simultaneously all the various modes of the global solution. In all cases, the
algorithm returns parameter determinations within (as estimated from
the Fisher Matrix) of the true answer, for both the actual and antipodal sky
solutions.Comment: submitted to Classical & Quantum Gravity. 19 pages, 4 figure
BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid He
We report results of torsional oscillator (TO) experiments on solid He at
temperatures above 1K. We have previously found that single crystals, once
disordered, show some mobility (decoupled mass) even at these rather high
temperatures. The decoupled mass fraction with single crystals is typically 20-
30%. In the present work we performed similar measurements on polycrystalline
solid samples. The decoupled mass with polycrystals is much smaller, 1%,
similar to what is observed by other groups. In particular, we compared the
properties of samples grown with the TO's rotation axis at different
orientations with respect to gravity. We found that the decoupled mass fraction
of bcc samples is independent of the angle between the rotation axis and
gravity. In contrast, hcp samples showed a significant difference in the
fraction of decoupled mass as the angle between the rotation axis and gravity
was varied between zero and 85 degrees. Dislocation dynamics in the solid
offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics
- special issue on Supersolidit
Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research
The possibility of a supersolid state of matter, i.e., a crystalline solid
exhibiting superfluid properties, first appeared in theoretical studies about
forty years ago. After a long period of little interest due to the lack of
experimental evidence, it has attracted strong experimental and theoretical
attention in the last few years since Kim and Chan (Penn State, USA) reported
evidence for nonclassical rotational inertia effects, a typical signature of
superfluidity, in samples of solid 4He. Since this "first observation", other
experimental groups have observed such effects in the response to the rotation
of samples of crystalline helium, and it has become clear that the response of
the solid is extremely sensitive to growth conditions, annealing processes, and
3He impurities. A peak in the specific heat in the same range of temperatures
has been reported as well as anomalies in the elastic behaviour of solid 4He
with a strong resemblance to the phenomena revealed by torsional oscillator
experiments. Very recently, the observation of unusual mass transport in hcp
solid 4He has also been reported, suggesting superflow. From the theoretical
point of view, powerful simulation methods have been used to study solid 4He,
but the interpretation of the data is still rather difficult; dealing with the
question of supersolidity means that one has to face not only the problem of
the coexistence of quantum coherence phenomena and crystalline order, exploring
the realm of spontaneous symmetry breaking and quantum field theory, but also
the problem of the role of disorder, i.e., how defects, such as vacancies,
impurities, dislocations, and grain boundaries, participate in the phase
transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
Reconstructing phylogenies from noisy quartets in polynomial time with a high success probability
<p>Abstract</p> <p>Background</p> <p>In recent years, quartet-based phylogeny reconstruction methods have received considerable attentions in the computational biology community. Traditionally, the accuracy of a phylogeny reconstruction method is measured by simulations on synthetic datasets with known "true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction method. Under this model, we propose three efficient algorithms to reconstruct the "true" phylogeny with a high success probability.</p> <p>Results</p> <p>The first algorithm can reconstruct the "true" phylogeny from the input quartet topology set without quartet errors in <it>O</it>(<it>n</it><sup>2</sup>) time by querying at most (<it>n </it>- 4) log(<it>n </it>- 1) quartet topologies, where <it>n </it>is the number of the taxa. When the input quartet topology set contains errors, the second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - <it>p </it>in <it>O</it>(<it>n</it><sup>4 </sup>log <it>n</it>) time, where <it>p </it>is the probability for a quartet topology being an error. This probability is improved by the third algorithm to approximately <inline-formula><m:math name="1748-7188-3-1-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>1</m:mn><m:mo>+</m:mo><m:msup><m:mi>q</m:mi><m:mn>2</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mn>2</m:mn></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>4</m:mn></m:msup><m:mo>+</m:mo><m:mfrac><m:mn>1</m:mn><m:mrow><m:mn>16</m:mn></m:mrow></m:mfrac><m:msup><m:mi>q</m:mi><m:mn>5</m:mn></m:msup></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaqcfa4aaSaaaeaacqaIXaqmaeaacqaIXaqmcqGHRaWkcqWGXbqCdaahaaqabeaacqaIYaGmaaGaey4kaSYaaSaaaeaacqaIXaqmaeaacqaIYaGmaaGaemyCae3aaWbaaeqabaGaeGinaqdaaiabgUcaRmaalaaabaGaeGymaedabaGaeGymaeJaeGOnaydaaiabdghaXnaaCaaabeqaaiabiwda1aaaaaaaaa@3D5A@</m:annotation></m:semantics></m:math></inline-formula>, where <inline-formula><m:math name="1748-7188-3-1-i2" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:semantics><m:mrow><m:mi>q</m:mi><m:mo>=</m:mo><m:mfrac><m:mi>p</m:mi><m:mrow><m:mn>1</m:mn><m:mo>−</m:mo><m:mi>p</m:mi></m:mrow></m:mfrac></m:mrow><m:annotation encoding="MathType-MTEF"> MathType@MTEF@5@5@+=feaagaart1ev2aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaGaemyCaeNaeyypa0tcfa4aaSaaaeaacqWGWbaCaeaacqaIXaqmcqGHsislcqWGWbaCaaaaaa@3391@</m:annotation></m:semantics></m:math></inline-formula>, with running time of <it>O</it>(<it>n</it><sup>5</sup>), which is at least 0.984 when <it>p </it>< 0.05.</p> <p>Conclusion</p> <p>The three proposed algorithms are mathematically guaranteed to reconstruct the "true" phylogeny with a high success probability. The experimental results showed that the third algorithm produced phylogenies with a higher probability than its aforementioned theoretical lower bound and outperformed some existing phylogeny reconstruction methods in both speed and accuracy.</p
Fast MCMC sampling for hidden markov models to determine copy number variations
<p>Abstract</p> <p>Background</p> <p>Hidden Markov Models (HMM) are often used for analyzing Comparative Genomic Hybridization (CGH) data to identify chromosomal aberrations or copy number variations by segmenting observation sequences. For efficiency reasons the parameters of a HMM are often estimated with maximum likelihood and a segmentation is obtained with the Viterbi algorithm. This introduces considerable uncertainty in the segmentation, which can be avoided with Bayesian approaches integrating out parameters using Markov Chain Monte Carlo (MCMC) sampling. While the advantages of Bayesian approaches have been clearly demonstrated, the likelihood based approaches are still preferred in practice for their lower running times; datasets coming from high-density arrays and next generation sequencing amplify these problems.</p> <p>Results</p> <p>We propose an approximate sampling technique, inspired by compression of discrete sequences in HMM computations and by <it>kd</it>-trees to leverage spatial relations between data points in typical data sets, to speed up the MCMC sampling.</p> <p>Conclusions</p> <p>We test our approximate sampling method on simulated and biological ArrayCGH datasets and high-density SNP arrays, and demonstrate a speed-up of 10 to 60 respectively 90 while achieving competitive results with the state-of-the art Bayesian approaches.</p> <p><it>Availability: </it>An implementation of our method will be made available as part of the open source GHMM library from <url>http://ghmm.org</url>.</p
- …