26 research outputs found

    Genome-wide association analysis of dementia and its clinical endophenotypes reveal novel loci associated with Alzheimer's disease and three causality networks : The GR@ACE project

    Get PDF
    Introduction: Large variability among Alzheimer's disease (AD) cases might impact genetic discoveries and complicate dissection of underlying biological pathways. Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and its clinical endophenotypes, defined based on AD's clinical certainty and vascular burden. We assessed the impact of known AD loci across endophenotypes to generate loci categories. We incorporated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional genome-wide association study data sets. Results: We classified known AD loci into three categories, which might reflect the disease clinical heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The meta-analysis strategy revealed the ANKRD31-rs4704171 and NDUFAF6-rs10098778 and confirmed SCIMP-rs7225151 and CD33-rs3865444. Discussion: The regulation of vasculature is a prominent causal component of probable AD. GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clinical heterogeneity in the AD series

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    Combination of white matter hyperintensities and Aβ burden is related to cognitive composites domain scores in subjective cognitive decline: the FACEHBI cohort

    No full text
    AbstractBackgroundTo explore whether the combination of white matter hyperintensities (WMHs) and amyloid-beta (Aβ) deposition is associated with worse cognitive performance on cognitive composites (CCs) domain scores in individuals with subjective cognitive decline (SCD).MethodsTwo hundred participants from the FACEHBI cohort underwent structural magnetic resonance imaging (MRI),18F-florbetaben positron emission tomography (FBB-PET), and neuropsychological assessment. WMHs were addressed through the Fazekas scale, the Age-Related White Matter Changes (ARWMC) scale, and the FreeSurfer pipeline. Eight CCs domain scores were created using the principal component analysis (PCA). Age, sex, education, and apolipoprotein E (APOE) were used as adjusting variables.ResultsAdjusted multiple linear regression models showed that FreeSurfer (B − .245; 95% CI − .1.676, − .393,p = .016) and β burden (SUVR) (B − .180; 95% CI − 2.140, − .292;p = .070) were associated with face–name associative memory CCs domain score, although the latest one was not statistically significant after correction for multiple testing (p = .070). There was non-significant interaction of these two factors on this same CCs domain score (p = .54). However, its cumulative effects on face–name associative performance indicated that those individuals with either higher WMH load or higher Aβ burden showed the worst performance on the face–name associative memory CCs domain score.ConclusionsOur results suggest that increased WMH load and increased Aβ are independently associated with poorer episodic memory performance in SCD individuals, indicating a cumulative effect of the combination of these two pathological conditions in promoting lower cognitive performance, an aspect that could help in terms of treatment and prevention.</jats:sec
    corecore