2,096 research outputs found
Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford
A \emph{metric tree embedding} of expected \emph{stretch~}
maps a weighted -node graph to a weighted tree with such that, for all ,
and
. Such embeddings are highly useful for designing
fast approximation algorithms, as many hard problems are easy to solve on tree
instances. However, to date the best parallel -depth algorithm that achieves an asymptotically optimal expected stretch of
requires
work and a metric as input.
In this paper, we show how to achieve the same guarantees using
depth and
work, where and is an arbitrarily small constant.
Moreover, one may further reduce the work to at the expense of increasing the expected stretch to
.
Our main tool in deriving these parallel algorithms is an algebraic
characterization of a generalization of the classic Moore-Bellman-Ford
algorithm. We consider this framework, which subsumes a variety of previous
"Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss
it in depth. In our tree embedding algorithm, we leverage it for providing
efficient query access to an approximate metric that allows sampling the tree
using depth and work.
We illustrate the generality and versatility of our techniques by various
examples and a number of additional results
Dynamic and Multi-functional Labeling Schemes
We investigate labeling schemes supporting adjacency, ancestry, sibling, and
connectivity queries in forests. In the course of more than 20 years, the
existence of labeling schemes supporting each of these
functions was proven, with the most recent being ancestry [Fraigniaud and
Korman, STOC '10]. Several multi-functional labeling schemes also enjoy lower
or upper bounds of or
respectively. Notably an upper bound of for
adjacency+siblings and a lower bound of for each of the
functions siblings, ancestry, and connectivity [Alstrup et al., SODA '03]. We
improve the constants hidden in the -notation. In particular we show a lower bound for connectivity+ancestry and
connectivity+siblings, as well as an upper bound of for connectivity+adjacency+siblings by altering existing
methods.
In the context of dynamic labeling schemes it is known that ancestry requires
bits [Cohen, et al. PODS '02]. In contrast, we show upper and lower
bounds on the label size for adjacency, siblings, and connectivity of
bits, and to support all three functions. There exist efficient
adjacency labeling schemes for planar, bounded treewidth, bounded arboricity
and interval graphs. In a dynamic setting, we show a lower bound of
for each of those families.Comment: 17 pages, 5 figure
Minority Becomes Majority in Social Networks
It is often observed that agents tend to imitate the behavior of their
neighbors in a social network. This imitating behavior might lead to the
strategic decision of adopting a public behavior that differs from what the
agent believes is the right one and this can subvert the behavior of the
population as a whole.
In this paper, we consider the case in which agents express preferences over
two alternatives and model social pressure with the majority dynamics: at each
step an agent is selected and its preference is replaced by the majority of the
preferences of her neighbors. In case of a tie, the agent does not change her
current preference. A profile of the agents' preferences is stable if the
preference of each agent coincides with the preference of at least half of the
neighbors (thus, the system is in equilibrium).
We ask whether there are network topologies that are robust to social
pressure. That is, we ask if there are graphs in which the majority of
preferences in an initial profile always coincides with the majority of the
preference in all stable profiles reachable from that profile. We completely
characterize the graphs with this robustness property by showing that this is
possible only if the graph has no edge or is a clique or very close to a
clique. In other words, except for this handful of graphs, every graph admits
at least one initial profile of preferences in which the majority dynamics can
subvert the initial majority. We also show that deciding whether a graph admits
a minority that becomes majority is NP-hard when the minority size is at most
1/4-th of the social network size.Comment: To appear in WINE 201
Towards the interoperability of computerised guidelines and electronic health records: an experiment with openEHR archetypes and a chronic heart failure guideline
Clinical guidelines contain recommendations based on the best empirical evidence available at the moment. There is a wide consensus about the benefits of guidelines and about the fact that they should be deployed through clinical information systems, making them available during clinical consultations. However, one of the main obstacles to this integration is the interaction with the electronic healthrecord system. With the aim of solving the interoperability problems of guideline systems, we have investigated the utilisation of the openEHR standardisation proposal in the context of one of the existing guideline representation languages. Concretely, we have designed a collection of archetypes to be used within a chronic heart failure guideline. The main contribution of our work is the utilisation of openEHR archetypes in the framework of guideline representation languages. Other contributions include both the concrete set of archetypes that we have selected and the methodological approach that we have followed to obtain itThis work has been supported by Fundaci´o Caixa Castell´o-Bancaixa, through the research project P11B2009-3
Monte Carlo simulations of pulse propagation in massive multichannel optical fiber communication systems
We study the combined effect of delayed Raman response and bit pattern
randomness on pulse propagation in massive multichannel optical fiber
communication systems. The propagation is described by a perturbed stochastic
nonlinear Schr\"odinger equation, which takes into account changes in pulse
amplitude and frequency as well as emission of continuous radiation. We perform
extensive numerical simulations with the model, and analyze the dynamics of the
frequency moments, the bit-error-rate, and the mutual distribution of amplitude
and position. The results of our numerical simulations are in good agreement
with theoretical predictions based on the adiabatic perturbation approach.Comment: Submitted to Physical Review E. 8 pages, 5 figure
An archetype-based solution for the interoperability of computerised guidelines and electronic health records
Clinical guidelines contain recommendations based on the best empirical evidence available at the moment. There is a wide con- sensus about the benefits of guidelines and about the fact that they should be deployed through clinical information systems, making them available during consultation time. However, one of the main obstacles to this integration is still the interaction with the electronic health record. In this paper we present an archetype-based approach to solve the inter- operability problems of guideline systems, as well as to enable guideline sharing. We also describe the knowledge requirements for the develop- ment of archetype-enabled guideline systems, and then focus on the de- velopment of appropriate guideline archetypes and on the connection of these archetypes to the target electronic health record
- …