127 research outputs found

    New tools and improvements in the Exoplanet Transit Database

    Get PDF

    Supernova explosions interacting with aspherical circumstellar material: implications for light curves, spectral line profiles, and polarization

    Full text link
    Some supernova (SN) explosions show evidence for interaction with pre-existing non-spherically symmetric circumstellar medium (CSM) in their light curves, spectral line profiles, and polarization signatures. To better understand the connection with binary stars and to aid in the interpretation of observations, we perform two-dimensional axisymmetric hydrodynamic simulations where an expanding spherical SN ejecta initialized with realistic density and velocity profiles collide with various aspherical CSM distributions. We consider CSM in the form of a circumstellar disk, colliding wind shells in binary stars with different orientations and distances from the SN progenitor, and bipolar lobes representing a scaled down version of the Homunculus nebula of η\eta~Car. We study how our simulations map onto observables, including approximate light curves, indicative spectral line profiles at late times, and estimates of polarization signature. We find that the SN--CSM collision layer is composed of normal and oblique shocks, reflected waves, and other hydrodynamical phenomena that lead to acceleration and shear instabilities. As a result, the total shock heating power fluctuates in time, although the emerging light curve might be smooth if the shock interaction region is deeply embedded in the SN envelope. SNe with circumstellar disks or bipolar lobes exhibit late-time spectral line profiles symmetric with respect to the rest velocity and relatively high polarization. In contrast, SNe with colliding wind shells naturally lead to line profiles with asymmetric and time-evolving blue and red wings and low polarization. Given the high frequency of binaries among massive stars, interaction of SN ejecta with a pre-existing colliding wind shell must occur and the observed signatures could be used to characterize the binary companion

    Close binaries and common envelopes

    Get PDF
    David Jones, Jorge García-Rojas, Ondƙej Pejcha and Roger Wesson report on their RAS Specialist Discussion Meeting exploring “Common envelope evolution and post-common-envelope systems”

    An R- and I-Band Photometric Variability Survey of the Cygnus OB2 Association

    Full text link
    We present a catalog of photometrically variable stars discovered within two 21'.3 X 21'.3 fields centered on the Cygnus OB2 association. There have hitherto been no deep optical variability studies of Cyg OB2 despite it being replete with early-type massive stars, perhaps due to the high and variable extinction (up to A_V ~ 20) that permeates much of the region. Here we provide results of the first variability study with this combination of spatial coverage (~ 0.5 deg) and photometric depth (R ~ 21 mag). We find 121 stars to be variable in both R- and I-band, 116 of them newly discovered. Of the 121 variables, we identify 27 eclipsing binaries (EBs) and eclipsing binary candidates, 20 potential Herbig Ae/Be stars, and 52 pulsating variables. Confirming both the status and the cluster membership of the Herbig Ae/Be stars would address the uncertainty regarding the age and star formation history of Cyg OB2. We match our catalog to known variables and binaries in the region, 2MASS near-IR (NIR) data, and Chandra X-ray observations to find counterparts to new variables in other wavelengths.Comment: 34 pages, 12 figures, submitted to Ap

    AT 2019abn: multi-wavelength observations of the first 200 days

    Get PDF
    AT 2019abn was discovered in the nearby M51 galaxy, by the Zwicky Transient Facility more than two magnitudes, and around 3 weeks, prior to its optical peak. We aimed to conduct a detailed photometric and spectroscopic follow-up campaign for AT 2019abn, with the early discovery allowing significant pre-maximum observations of an intermediate luminosity red transient (ILRT) for the first time. This work is based around the analysis of u'BVr'i'z'H photometry and low-resolution spectroscopy with the Liverpool Telescope, medium-resolution spectroscopy with Gran Telescopio Canarias (GTC) and near-infrared imaging with GTC and the Nordic Optical Telescope. We present the most detailed optical light curve of an ILRT to date, with multi-band photometry starting around three weeks before peak brightness. The transient peaked at an observed absolute magnitude of M_r=-13.1, although it is subject to significant reddening from dust in M51, implying an intrinsic M_r~-15.2. The initial light curve showed a linear, achromatic rise in magnitude, before becoming bluer at peak. After peak brightness the transient gradually cooled. This is reflected in our spectra which at later times show absorption from species such as Fe I, Ni I and Li I. A spectrum taken around peak brightness shows narrow, low-velocity absorption lines, which we interpret as likely originating from pre-existing circumstellar material. We conclude that, while there are some peculiarities, such as the radius evolution, AT 2019abn overall fits in well with the ILRT class of objects, and is the most luminous member of the class seen to date

    AT 2019abn:multi-wavelength observations of the first 200 days

    Get PDF
    AT 2019abn was discovered in the nearby M51 galaxy, by the Zwicky Transient Facility more than two magnitudes, and around 3 weeks, prior to its optical peak. We aimed to conduct a detailed photometric and spectroscopic follow-up campaign for AT 2019abn, with the early discovery allowing significant pre-maximum observations of an intermediate luminosity red transient (ILRT) for the first time. This work is based around the analysis of u'BVr'i'z'H photometry and low-resolution spectroscopy with the Liverpool Telescope, medium-resolution spectroscopy with Gran Telescopio Canarias (GTC) and near-infrared imaging with GTC and the Nordic Optical Telescope. We present the most detailed optical light curve of an ILRT to date, with multi-band photometry starting around three weeks before peak brightness. The transient peaked at an observed absolute magnitude of M_r=-13.1, although it is subject to significant reddening from dust in M51, implying an intrinsic M_r~-15.2. The initial light curve showed a linear, achromatic rise in magnitude, before becoming bluer at peak. After peak brightness the transient gradually cooled. This is reflected in our spectra which at later times show absorption from species such as Fe I, Ni I and Li I. A spectrum taken around peak brightness shows narrow, low-velocity absorption lines, which we interpret as likely originating from pre-existing circumstellar material. We conclude that, while there are some peculiarities, such as the radius evolution, AT 2019abn overall fits in well with the ILRT class of objects, and is the most luminous member of the class seen to date
    • 

    corecore