44 research outputs found

    Gate-controlled reversible rectifying behaviour in tunnel contacted atomically-thin MoS2_{2} transistor

    Full text link
    Atomically-thin 2D semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their full acceptance as compliant materials for integration in logic devices. Two key-components to master are the barriers at metal/semiconductor interfaces and the mobility of the semiconducting channel, which endow the building-blocks of pn{pn} diode and field effect transistor. Here, we have devised a reverted stacking technique to intercalate a wrinkle-free h-BN tunnel layer between MoS2_{2} channel and contacting electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed unprecedented features of ambipolar pn{pn} to np{np} diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Comment: 23 pages, 5 main figures + 9 SI figure

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Core-Shell Carbon Nanofibers@Ni(OH)<sub>2</sub>/NiO Composites for High-Performance Asymmetric Supercapacitors

    No full text
    The application of transition metal oxides/hydroxides in energy storage has long been studied by researchers. In this paper, the core-shell CNFs@Ni(OH)2/NiO composite electrodes were prepared by calcining carbon nanofibers (CNFs) coated with Ni(OH)2 under an N2 atmosphere, in which NiO was generated by the thermal decomposition of Ni(OH)2. After low-temperature carbonization at 200 °C, 250 °C and 300 °C for 1 h, Ni(OH)2 or/and NiO existed on the surface of CNFs to form the core-shell composite CNFs@Ni(OH)2/NiO-X (X = 200, 250, 300), in which CNFs@Ni(OH)2/NiO-250 had the optimal electrochemical properties due to the coexistence of Ni(OH)2 and NiO. Its specific capacitance could reach 695 F g−1 at 1 A g−1, and it still had 74% capacitance retention and 88% coulomb efficiency after 2000 cycles at 5 A g−1. Additionally, the asymmetric supercapacitor (ASC) assembled from CNFs@Ni(OH)2/NiO-250 had excellent energy storage performance with a maximum power density of 4000 W kg−1 and a maximum functional capacity density of 16.56 Wh kg−1

    CuO/ZnO/CQDs@PAN Nanocomposites with Ternary Heterostructures for Enhancing Photocatalytic Performance

    No full text
    Photocatalysis is a green technology. In this paper, CuO/ZnO/carbon quantum dots (CQDs)@PAN nanocomposites with ternary heterostructures (CZC@PAN)—as high-performance environmentally friendly nanophotocatalysts—were prepared by electrospinning, heat treatment, and hydrothermal synthesis in sequence, and their practical applications were investigated by degrading methylene blue (MB). The synergistic effects of components in ternary heterostructures on the morphology, structure, and photocatalytic performance of CZC@PAN were analyzed, and their photocatalytic mechanism was further discussed. The results showed that due to the formation of p-n heterojunctions and the loading of CQDs and CZC@PAN had excellent photocatalytic degradation performance, and its photocatalytic degradation rate for MB reached 99.56% under natural sunlight for 4 h

    Core–Shell Structured Carbon Nanofiber-Based Electrodes for High-Performance Supercapacitors

    No full text
    The combination of multiple electrode materials and their reasonable structural design are conducive to the preparation of composite electrodes with excellent performance. In this study, based on carbon nanofibers grown with Ni(OH)2 and NiO (CHO) prepared by electrospinning, hydrothermal growth, and low-temperature carbonization, five transition metal sulfides (MnS, CoS, FeS, CuS, and NiS) were hydrothermally grown on their surfaces, exhibiting that CHO/NiS had the optimal electrochemical properties. Subsequently, the effect of hydrothermal growth time on CHO/NiS revealed that the electrochemical performance of CHO/NiS-3h was optimal, with a specific capacitance of up to 1717 F g−1 (1 A g−1), due to its multistage core–shell structure. Moreover, the diffusion-controlled process of CHO/NiS-3h dominated its charge energy storage mechanism. Finally, the asymmetric supercapacitor assembled with CHO/NiS-3h as the positive electrode demonstrated an energy density of 27.76 Wh kg−1 at a maximum power density of 4000 W kg−1, and it still maintained a power density of 800 W kg−1 at a maximum energy density of 37.97 Wh kg−1, exhibiting the potential application of multistage core–shell composite materials in high-performance supercapacitors

    Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet

    No full text
    A heat source model is the key issue for laser welding simulation. The Gaussian heat source model is not suitable to match the actual laser weld profile accurately. Furthermore, fiber lasers are widely recognized to result in good-quality laser beam output, a narrower weld zone, less distortion, and high process efficiency, compared with other types of lasers (such as CO2, Nd : YAG, and diode lasers). At present, there are few heat source models for fiber laser welding. Most of researchers evaluate the weld profile only by the bead width and depth of penetration, which is not suitable for the laser keyhole welding nail-like profile. This paper reports an experimental study and FEA simulation of fiber laser butt welding on 1 mm thick A304 stainless steel. A new heat source model (cylindrical and cylindrical) is established to match the actual weld profile using Marc and Fortran software. Four bead geometry parameters (penetration depth, bead width, waist width, and depth of the waist) are used to compare between the experimental and simulation results. The results show that the heat source model of cylindrical and cylindrical can match the actual shape of the fiber laser welding feasibly. The error range of the penetration depth, bead width, waist width, and depth of the waist between experimental and simulation results is about 4.1 ± 1.6%, 2.9 ± 2.0%, 13.6 ± 7.4/%, and 18.3 ± 8.0%, respectively. In addition, it is found that the depth of penetration is more sensitive to laser power rather than bead width, waist width, and depth of the waist. Welding speed has a similar influence on the depth of penetration, weld width, waist width, and depth of the waist

    Bone-targeted methotrexate–alendronate conjugate inhibits osteoclastogenesis in vitro and prevents bone loss and inflammation of collagen-induced arthritis in vivo

    No full text
    Rheumatoid arthritis (RA), a disease that causes joint destruction and bone erosion, is related to osteoclast activity. RA is generally treated with methotrexate (MTX). In this study, a MTX–Alendronate (ALN) conjugate was synthesized and characterized. The conjugate dramatically inhibited osteoclast formation and bone resorption compared with MTX and ALN used alone or in combination. Due to the characteristics of ALN, the MTX–ALN conjugate can adhere to the exposed bone surface and enhance drug accumulation in the pathological region for targeted therapy against osteoclastogenesis. Additionally, MTX was rapidly released in the presence of lysozyme under mildly acidic conditions, similar to inflammatory tissue and osteoclast-surviving conditions, which contributes to inflammatory inhibition; this was confirmed by the presence of pro-inflammatory cytokines. Our study highlights the use of the MTX–ALN conjugate as a potential therapeutic approach for RA by targeting osteoclastogenesis
    corecore