77 research outputs found

    Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses

    No full text
    International audienceIn order to develop novel far infrared window material, a series of Ge-Ga-Te-ZnI2 chalcohalide glasses were prepared by traditional melt-quenching method and their glass-forming region was determined also. Here, some measurements including X-ray diffraction (XRD), differential thermal analysis (DTA), UV-Vis-NIR absorption spectrum, and infrared optical transmission spectra were carried out. The allowed indirect transition optical band gap was calculated according to the classical Tauc equation. The results show that with the addition of ZnI2, the glass-forming ability and thermal stability are improved gradually. With the contents of ZnI2 increased from 5 to 20 at.%, continued blue-shifting occurs in the cutting-off absorption edge of short-wavelength and the values of indirect optical band gaps were observed with ranges from 0.596 to 0.626 eV in these glasses. These GeTe4.3-GaTe3-ZnI2 glasses show wide optical transmission and the infrared cut-off wavelengths are larger than 25 μm, which implies that the Ge-Ga-Te-ZnI2 chalcogenide glasses possess the potential of far-IR optical window applications

    CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark Model for Rectal Cancer Segmentation

    Full text link
    Rectal cancer segmentation of CT image plays a crucial role in timely clinical diagnosis, radiotherapy treatment, and follow-up. Although current segmentation methods have shown promise in delineating cancerous tissues, they still encounter challenges in achieving high segmentation precision. These obstacles arise from the intricate anatomical structures of the rectum and the difficulties in performing differential diagnosis of rectal cancer. Additionally, a major obstacle is the lack of a large-scale, finely annotated CT image dataset for rectal cancer segmentation. To address these issues, this work introduces a novel large scale rectal cancer CT image dataset CARE with pixel-level annotations for both normal and cancerous rectum, which serves as a valuable resource for algorithm research and clinical application development. Moreover, we propose a novel medical cancer lesion segmentation benchmark model named U-SAM. The model is specifically designed to tackle the challenges posed by the intricate anatomical structures of abdominal organs by incorporating prompt information. U-SAM contains three key components: promptable information (e.g., points) to aid in target area localization, a convolution module for capturing low-level lesion details, and skip-connections to preserve and recover spatial information during the encoding-decoding process. To evaluate the effectiveness of U-SAM, we systematically compare its performance with several popular segmentation methods on the CARE dataset. The generalization of the model is further verified on the WORD dataset. Extensive experiments demonstrate that the proposed U-SAM outperforms state-of-the-art methods on these two datasets. These experiments can serve as the baseline for future research and clinical application development.Comment: 8 page

    Preparation of Low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications

    No full text
    International audienceGe15Ga10Te75 (GGT) glass shows good transparency between 2 and 25 μm wavelengths, good chemical and thermal stability to be drawn into fiber, which appears to be a good candidate for developing far-IR fiber-optics devices, although there are strong absorption peaks caused by impurities in the glass. With the aim of decreasing the content of impurities and micro-crystal particles in prepared \GGT\ glass samples, a rapid heating furnace and the fast distillation method based on vapor evaporation plus deposition under vacuum condition was adopted. Properties measurements including Differential Scanning Calorimeter (DSC), Vis-NIR and \IR\ transmitting spectra were performed on the prepared glass samples. Dependence of optical loss on the types of oxygenic getters and their contents and glass quenching temperature was also studied. All these results show that the average optical losses of distilled glass samples were greatly improved by the designated purification processes. Besides, the quality of the glass samples can be improved with the optimized quenching temperature. In all, the optical loss of the glass can be reduced effectively. Minimum optical losses of 0.042 dB/mm at 9 μm and 0.037 dB/mm at 12 μm are obtained after a right purification process, which are the lowest loss of the \GGT\ chalcogenide glass nowadays

    Freely adjusted properties in Ge–S based chalcogenide glasses with iodine incorporation

    No full text
    International audienceIn this study, we examined the function of halogen iodine acting as a glass network modifier in green chalcogenide glasses based on the Ge–S system. We obtained a series of Ge–S–I glasses and determined their glass-forming region. We then recorded the physical, thermal, and optical properties and studied the effect of halogen iodine on Ge–S–I glasses. Results show that these glasses have relatively wide optical transmission window for infrared (IR) applications. The softening temperature of Ge–S–I glasses varies from 210.54 °C to 321.63 °C, this temperature fits well with some kinds of high-temperature polymers, such as PES and PEI, the polymers serve as protective layers with high strength and flexibility, thus simplifying the fabrication processes of IR chalcogenide glass fiber. Finally, we performed a purification process to eliminate impurities and to improve optical spectr

    Asymmetric Outcomes of Type 1 Retinopathy of Prematurity after Bilateral Intravitreal Ranibizumab Treatment

    Get PDF
    Purpose. To present cases with retinopathy of prematurity (ROP), who were treated with intravitreal injection of ranibizumab (IVR) and had unpredictable asymmetric outcomes. Methods. A retrospective review was performed in infants with type 1 ROP and had bilateral IVR (0.25 mg/0.025 mL) as initial treatment. Patients were classified into the asymmetric outcome group and the symmetric outcome group. Results. Eighty-four patients (168 eyes) were included. There were 18 eyes of 9 patients (10.7%) in the asymmetric outcome group and 150 eyes of 75 patients (89.3%) in the symmetric outcome group. In the symmetric outcome group, 86 eyes (57.3%) had ROP regression, 60 eyes (40%) had reactivation requiring laser treatment, and 4 eyes (2.7%) progressed to retinal detachment requiring vitrectomy. In the asymmetric outcome group, one of the eyes of the 9 patients had ROP regression with/without reactivation after IVR, while the contralateral eyes had negative response, including remarkable posterior fibrosis, partial or total retinal detachment, and vitreous hemorrhage. There was statistically significant difference between the birth weight of the two groups. Conclusion. Contralateral eyes with ROP can take a different clinical course after ranibizumab treatment. High rate of reactivation after IVR is another concern that ophthalmologists should pay attention to

    Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    No full text
    International audienceDecreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge–Sb–Se–based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge–Sb–Se–I glasses can reach up to 80% with an effective transmission window between 0.94 μm to 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers

    Fabrication and characterization of Ge–Sb–Se–I glasses and fibers

    No full text
    International audienceChalcogenide glasses of the Ge20Sb5Se75−x I x (x = 0, 5, 10, 15, 20 at.%) system were prepared. This study was performed to examine some Ge–Sb–Se–I glass physical and optical properties, the structural evolution of the glass network, and the optical properties of the infrared glass fibers based on our previous studies. The variation process of the glass physical properties, such as transition temperature, glass density, and refractive index, was investigated from the glass of Ge20Sb5Se75 to the Ge20Sb5Se75−x I x glass series. The structural evolutions of these glasses were examined by Raman spectroscopy. The Ge20Sb5Se55I20 composition was selected for the preparation of the IR fiber. The Ge20Sb5Se55I20 glass was purified through distillation, and the intensity of the impurity absorption peaks caused by Ge–O, H2O, and Se–H was reduced or eliminated in the purified glasses. Then, Ge20Sb5Se55I20 chalcogenide glass fiber for mid-infrared transmission was fabricated using high-purity materials. The transmission loss of the Ge20Sb5Se55I20 fiber was greatly reduced compared with that of the Ge20Sb5Se75 glass fiber. The lowest losses obtained were 3.5 dB/m at 3.3 μm for Ge20Sb5Se75I20 fiber, which was remarkably improved compared with 48 dB/m of the unpurified Ge20Sb5Se75 fiber

    Nickel pyrithione induces apoptosis in chronic myeloid leukemia cells resistant to imatinib via both Bcr/Abl-dependent and Bcr/Abl-independent mechanisms

    Get PDF
    Abstract Background Acquired imatinib (IM) resistance is frequently characterized by Bcr-Abl mutations that affect IM binding and kinase inhibition in patients with chronic myelogenous leukemia (CML). Bcr-Abl-T315I mutation is the predominant mechanism of the acquired resistance to IM. Therefore, it is urgent to search for additional approaches and targeting strategies to overcome IM resistance. We recently reported that nickel pyrithione (NiPT) potently inhibits the ubiquitin proteasome system via targeting the 19S proteasome-associated deubiquitinases (UCHL5 and USP14), without effecting on the 20S proteasome. In this present study, we investigated the effect of NiPT, a novel proteasomal deubiquitinase inhibitor, on cell survival or apoptosis in CML cells bearing Bcr-Abl-T315I or wild-type Bcr-Abl. Methods Cell viability was examined by MTS assay and trypan blue exclusion staining assay in KBM5, KBM5R, K562, BaF3-p210-WT, BaF3-p210-T315I cells, and CML patients’ bone marrow samples treated with NiPT. Cell apoptosis in CML cells was detected with Annexin V-FITC/PI and rhodamine-123 staining followed by fluorescence microscopy and flow cytometry and with western blot analyses for apoptosis-associated proteins. Expression levels of Bcr-Abl in CML cells were analyzed by using western blotting and real-time PCR. The 20S proteasome peptidase activity was measured using specific fluorogenic substrate. Active-site-directed labeling of proteasomal DUBs, as well as the phosphorylation of USP14 was used for evaluating the inhibition of the DUBs activity by NiPT. Mouse xenograft models of KBM5 and KBM5R cells were analyzed, and Bcr-Abl-related proteins and protein biomarkers related to proliferation, differentiation, and adhesion in tumor tissues were detected by western blots and/or immunohistological analyses. Results NiPT induced apoptosis in CML cells and inhibited the growth of IM-resistant Bcr-Abl-T315I xenografts in nude mice. Mechanistically, NiPT induced decreases in Bcr-Abl proteins, which were associated with downregulation of Bcr-Abl transcription and with the cleavage of Bcr-Abl protein by activated caspases. NiPT-induced ubiquitin proteasome system inhibition induced caspase activation in both IM-resistant and IM-sensitive CML cells, and the caspase activation was required for NiPT-induced Bcr-Abl downregulation and apoptotic cell death. Conclusions These findings support that NiPT can overcome IM resistance through both Bcr-Abl-dependent and Bcr-Abl-independent mechanisms, providing potentially a new option for CML treatment

    Inhibition of Proteasomal Deubiquitinase by Silver Complex Induces Apoptosis in Non-Small Cell Lung Cancer Cells

    Get PDF
    Background/Aims: The ubiquitin proteasome system (UPS) is responsible for the degradation of most intracellular proteins, and proteasomal deubiquitinases (DUBs) have recently been highlighted as novel anticancer targets. It is well documented that copper complexes can inhibit UPS function through targeting both 20S proteasome and proteasomal DUBs. The antineoplastic activities of silver complexes have received much attention, but the exact mechanisms are not fully elucidated. In this study, we aim to investigate the effects of a novel silver complex [Ag(S2CN(C2H5)2)]6 (AgDT) on UPS function and its anticancer potential in non-small cell lung cancer (NSCLC). Methods: Cell viability assay (i.e., the MTS assay) and flow cytometry assay were used to analyze the cell viability and apoptosis. Proteasome inhibition was measured using 20S proteasome activity assay and 19S proteasomal DUBs activity assay. Western blot analysis and immunohistochemistry were performed to detect protein levels. The in vivo antitumor activity of AgDT was assessed with nude xenografts. Results: Silver ions, alone or in combination with disulfiram (DSF), induced UPS inhibition in NSCLC cells mainly through inhibition of proteasomal DUBs activities. Silver complex AgDT triggered intracellular accumulation of ubiquitinated proteins, and prevented the degradation of surrogate substrate GFPu. Mechanistically, AgDT potently inhibited the activities of proteasomal DUBs USP14 and UCHL5, without altering the 20S proteasome peptidases. Moreover, AgDT induced apoptosis in NSCLC cells and significantly inhibited tumor growth in xenografts. Conclusion: Our findings suggest that silver complex AgDT is a novel metal-based proteasomal DUBs inhibitor, and pharmacologic inhibition of USP14 and UCHL5 could prove to be an effective therapeutic strategy for NSCLC

    HTRA1 variant increases risk to neovascular age-related macular degeneration in Chinese population

    Get PDF
    AbstractAge-related macular degeneration (AMD) is a leading cause of irreversible visual impairment in the world. Advanced AMD can be divided into wet AMD (choroidal neovascularization) and dry AMD (geographic atrophy, GA). Drusen is characterized by deposits in the macula without visual loss and is an early AMD sign in the Caucasian population. rs11200638 in the promoter of HTRA1 has recently been shown to increases the risk for wet AMD in both Caucasian and Hong Kong Chinese populations. In order to replicate these results in a different cohort, we genotyped rs11200638 for 164 Chinese patients (90 wet AMD and 74 drusen) and 106 normal controls in a Han Mainland Chinese cohort. The genotypes were compared using chi square analysis for an additive allelic model. rs11200638 was significantly associated with wet AMD (p=5.00×10−12). Unlike in the Caucasian population, the risk allele of rs11200638 was not associated with drusen in our Chinese population. These findings confirm the association of HTRA1 with wet AMD
    • …
    corecore