733 research outputs found
Regulating polarity by directing traffic: Cdc42 prevents adherens junctions from Crumblin' aPart
The GTPase Cdc42 was among the original genes identified with roles in cell polarity, and interest in its cellular roles from yeast to humans remains high. Cdc42 is a well-known regulator of the actin cytoskeleton, but also plays important roles in vesicular trafficking. In this issue, Harris and Tepass (Harris, K.P, and U. Tepass. 2008. J. Cell. Biol. 183:1129–1143) provide new insights into how Cdc42 and Par proteins work together to modulate cell adhesion and polarity during embryonic morphogenesis by regulating the traffic of key cell junction proteins
extradenticle determines segmental identities throughout Drosophila development
extradenticle (exd) and the homeotic selector proteins together establish segmental identities by coordinately regulating the expression of downstream target genes. The inappropriate expression of these targets in exd mutant embryos results in homeotic transformations and aberrant morphogenesis. Here we examine the role of exd in adult development by using genetic mosaics and a hypomorphic exd allele caused by a point mutation in the homeodomain. exd continues to be essential for the specification of segmental identities, consistent with a continuing requirement for exd as cofactor of the homeotic selector proteins. Loss of exd results in the homeotic transformation of abdominal segments to an A5 or A6 segmental identity, the antenna and arista to leg, and the head capsule to dorsal thorax or notum. Proximal leg structures are particularly sensitive to the loss of exd, although exd does not affect the allocation of proximal positional values of the leg imaginal disc. Using heat-shocks to induce expression of a hsp70-exd fusion gene, we show that, in contrast to the homeotic selector genes, ubiquitously high levels of exd expression do not cause pattern abnormalities or segmental transformations
Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with Fascin
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) proteins are required for the formation and maintenance of filopodia, finger-like projections at the leading edge of migrating cells that are composed of parallel actin filaments bundled by Fascin. We imaged individual fluorescently labeled Drosophila Ena molecules on both single and Fascin-bundled actin filaments in vitro. Ena stimulates actin assembly by remaining continuously associated with the barbed end and increasing the elongation rate by approximately two- to threefold. Remarkably, the frequency and length of Ena’s processive runs are enhanced on filaments within a Fascin bundle, which drives a positive feedback cycle that allows the assembly of uniformly thick filopodia-like F-actin bundles composed of multiple filaments with aligned ends
Defining Components of the ßcatenin Destruction Complex and Exploring Its Regulation and Mechanisms of Action during Development
A subset of signaling pathways play exceptionally important roles in embryonic and post-embryonic development, and mis-regulation of these pathways occurs in most human cancers. One such pathway is the Wnt pathway. The primary mechanism keeping Wnt signaling off in the absence of ligand is regulated proteasomal destruction of the canonical Wnt effector ßcatenin (or its fly homolog Armadillo). A substantial body of evidence indicates that SCF(βTrCP) mediates βcat destruction, however, an essential role for Roc1 has not been demonstrated in this process, as would be predicted. In addition, other E3 ligases have also been proposed to destroy βcat, suggesting that βcat destruction may be regulated differently in different tissues.Here we used cultured Drosophila cells, human colon cancer cells, and Drosophila embryos and larvae to explore the machinery that targets Armadillo for destruction. Using RNAi in Drosophila S2 cells to examine which SCF components are essential for Armadillo destruction, we find that Roc1/Roc1a is essential for regulating Armadillo stability, and that in these cells the only F-box protein playing a detectable role is Slimb. Second, we find that while embryonic and larval Drosophila tissues use the same destruction complex proteins, the response of these tissues to destruction complex inactivation differs, with Armadillo levels more elevated in embryos. We provide evidence consistent with the possibility that this is due to differences in armadillo mRNA levels. Third, we find that there is no correlation between the ability of different APC2 mutant proteins to negatively regulate Armadillo levels, and their recently described function in positively-regulating Wnt signaling. Finally, we demonstrate that APC proteins lacking the N-terminal Armadillo-repeat domain cannot restore Armadillo destruction but retain residual function in negatively-regulating Wnt signaling.We use these data to refine our model for how Wnt signaling is regulated during normal development
Drosophila α-Catenin and E-cadherin Bind to Distinct Regions of Drosophila Armadillo
Adherens junctions are multiprotein complexes mediating cell-cell adhesion and communication. They are organized around a transmembrane cadherin, which binds a set of cytoplasmic proteins required for adhesion and to link the complex to the actin cytoskeleton. Three components of Drosophila adherens junctions, analogous to those in vertebrates, have been identified: Armadillo (homolog of beta-catenin), Drosophila E-cadherin (DE-cadherin), and alpha-catenin. We carried out the first analysis of the interactions between these proteins using in vitro binding assays, the yeast two-hybrid system, and in vivo assays. We identified a 76-amino acid region of Armadillo that is necessary and sufficient for binding alpha-catenin and found that the N-terminal 258 amino acids of alpha-catenin interact with Armadillo. A large region of Armadillo, spanning six central Armadillo repeats, is required for DE-cadherin binding, whereas only 41 amino acids of the DE-cadherin cytoplasmic tail are sufficient for Armadillo binding. Our data complement and extend results obtained in studies of vertebrate adherens junctions, providing a foundation for understanding how junctional proteins assemble and a basis for interpreting existing mutations and creating new ones
The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication
Restricting centriole duplication to once per cell cycle is critical for chromosome segregation and genomic stability, but the mechanisms underlying this block to reduplication are unclear. Genetic analyses have suggested an involvement for Skp/Cullin/F box (SCF)-class ubiquitin ligases in this process. In this study, we describe a mechanism to prevent centriole reduplication in Drosophila melanogaster whereby the SCF E3 ubiquitin ligase in complex with the F-box protein Slimb mediates proteolytic degradation of the centrosomal regulatory kinase Plk4. We identified SCFSlimb as a regulator of centriole duplication via an RNA interference (RNAi) screen of Cullin-based ubiquitin ligases. We found that Plk4 binds to Slimb and is an SCFSlimb target. Both Slimb and Plk4 localize to centrioles, with Plk4 levels highest at mitosis and absent during S phase. Using a Plk4 Slimb-binding mutant and Slimb RNAi, we show that Slimb regulates Plk4 localization to centrioles during interphase, thus regulating centriole number and ensuring the block to centriole reduplication
CellGeo: A computational platform for the analysis of shape changes in cells with complex geometries
The open source MATLAB application CellGeo is a user-friendly computational platform that allows simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia to growth cones.Cell biologists increasingly rely on computer-aided image analysis, allowing them to collect precise, unbiased quantitative results. However, despite great progress in image processing and computer vision, current computational approaches fail to address many key aspects of cell behavior, including the cell protrusions that guide cell migration and drive morphogenesis. We developed the open source MATLAB application CellGeo, a user-friendly computational platform to allow simultaneous, automated tracking and analysis of dynamic changes in cell shape, including protrusions ranging from filopodia to lamellipodia. Our method maps an arbitrary cell shape onto a tree graph that, unlike traditional skeletonization algorithms, preserves complex boundary features. CellGeo allows rigorous but flexible definition and accurate automated detection and tracking of geometric features of interest. We demonstrate CellGeo’s utility by deriving new insights into (a) the roles of Diaphanous, Enabled, and Capping protein in regulating filopodia and lamellipodia dynamics in Drosophila melanogaster cells and (b) the dynamic properties of growth cones in catecholaminergic a–differentiated neuroblastoma cells
MAGIA, a web-based tool for miRNA and Genes Integrated Analysis
MAGIA (miRNA and genes integrated analysis) is a novel web tool for the integrative analysis of target predictions, miRNA and gene expression data. MAGIA is divided into two parts: the query section allows the user to retrieve and browse updated miRNA target predictions computed with a number of different algorithms (PITA, miRanda and Target Scan) and Boolean combinations thereof. The analysis section comprises a multistep procedure for (i) direct integration through different functional measures (parametric and non-parametric correlation indexes, a variational Bayesian model, mutual information and a meta-analysis approach based on P-value combination) of mRNA and miRNA expression data, (ii) construction of bipartite regulatory network of the best miRNA and mRNA putative interactions and (iii) retrieval of information available in several public databases of genes, miRNAs and diseases and via scientific literature text-mining. MAGIA is freely available for Academic users at http://gencomp.bio.unipd.it/magia
A mathematical model for breath gas analysis of volatile organic compounds with special emphasis on acetone
Recommended standardized procedures for determining exhaled lower respiratory
nitric oxide and nasal nitric oxide have been developed by task forces of the
European Respiratory Society and the American Thoracic Society. These
recommendations have paved the way for the measurement of nitric oxide to
become a diagnostic tool for specific clinical applications. It would be
desirable to develop similar guidelines for the sampling of other trace gases
in exhaled breath, especially volatile organic compounds (VOCs) which reflect
ongoing metabolism. The concentrations of water-soluble, blood-borne substances
in exhaled breath are influenced by: (i) breathing patterns affecting gas
exchange in the conducting airways; (ii) the concentrations in the
tracheo-bronchial lining fluid; (iii) the alveolar and systemic concentrations
of the compound. The classical Farhi equation takes only the alveolar
concentrations into account. Real-time measurements of acetone in end-tidal
breath under an ergometer challenge show characteristics which cannot be
explained within the Farhi setting. Here we develop a compartment model that
reliably captures these profiles and is capable of relating breath to the
systemic concentrations of acetone. By comparison with experimental data it is
inferred that the major part of variability in breath acetone concentrations
(e.g., in response to moderate exercise or altered breathing patterns) can be
attributed to airway gas exchange, with minimal changes of the underlying blood
and tissue concentrations. Moreover, it is deduced that measured end-tidal
breath concentrations of acetone determined during resting conditions and free
breathing will be rather poor indicators for endogenous levels. Particularly,
the current formulation includes the classical Farhi and the Scheid series
inhomogeneity model as special limiting cases.Comment: 38 page
Hybrid optimization method with general switching strategy for parameter estimation
This article is available from: http://www.biomedcentral.com/1752-0509/2/26[Background] Modeling and simulation of cellular signaling and metabolic pathways as networks of
biochemical reactions yields sets of non-linear ordinary differential equations. These models usually
depend on several parameters and initial conditions. If these parameters are unknown, results from
simulation studies can be misleading. Such a scenario can be avoided by fitting the model to
experimental data before analyzing the system. This involves parameter estimation which is usually
performed by minimizing a cost function which quantifies the difference between model predictions
and measurements. Mathematically, this is formulated as a non-linear optimization problem which
often results to be multi-modal (non-convex), rendering local optimization methods detrimental.[Results] In this work we propose a new hybrid global method, based on the combination of an
evolutionary search strategy with a local multiple-shooting approach, which offers a reliable and
efficient alternative for the solution of large scale parameter estimation problems.[Conclusion] The presented new hybrid strategy offers two main advantages over previous
approaches: First, it is equipped with a switching strategy which allows the systematic
determination of the transition from the local to global search. This avoids computationally
expensive tests in advance. Second, using multiple-shooting as the local search procedure reduces
the multi-modality of the non-linear optimization problem significantly. Because multiple-shooting
avoids possible spurious solutions in the vicinity of the global optimum it often outperforms the
frequently used initial value approach (single-shooting). Thereby, the use of multiple-shooting yields
an enhanced robustness of the hybrid approach.This work was supported by the European Community as part of the FP6
COSBICS Project (STREP FP6-512060), the German Federal Ministry of
Education and Research, BMBF-project FRISYS (grant 0313921) and Xunta
de Galicia (PGIDIT05PXIC40201PM).Peer reviewe
- …