10,986 research outputs found
Hamiltonian of a many-electron system with single-electron and electron-pair states in a two-dimensional periodic potential
Based on the metastable electron-pair energy band in a two-dimensional (2D)
periodic potential obtained previously by Hai and Castelano [J. Phys.: Condens.
Matter 26, 115502 (2014)], we present in this work a Hamiltonian of many
electrons consisting of single electrons and electron pairs in the 2D system.
The electron-pair states are metastable of energies higher than those of the
single-electron states at low electron density. We assume two different
scenarios for the single-electron band. When it is considered as the lowest
conduction band of a crystal, we compare the obtained Hamiltonian with the
phenomenological model Hamiltonian of a boson-fermion mixture proposed by
Friedberg and Lee [Phys. Rev. B 40, 6745 (1989)]. Single-electron-electron-pair
and electron-pair-electron-pair interaction terms appear in our Hamiltonian and
the interaction potentials can be determined from the electron-electron Coulomb
interactions. When we consider the single-electron band as the highest valence
band of a crystal, we show that holes in this valence band are important for
stabilization of the electron-pair states in the system
Passaging of a Newcastle disease virus pigeon variant in chickens results in selection of viruses with mutations in the polymerase complex enhancing virus replication and virulence
Some Newcastle disease virus (NDV) variants isolated from pigeons (pigeon paramyxovirus type 1; PPMV-1) do not show their full virulence potential for domestic chickens but may become virulent upon spread in these animals. In this study we examined the molecular changes responsible for this gain of virulence by passaging a low-pathogenic PPMV-1 isolate in chickens. Complete genome sequencing of virus obtained after 1, 3 and 5 passages showed the increase in virulence was not accompanied by changes in the fusion protein – a well known virulence determinant of NDV – but by mutations in the L and P replication proteins. The effect of these mutations on virulence was confirmed by means of reverse genetics using an infectious cDNA clone. Acquisition of three amino acid mutations, two in the L protein and one in the P protein, significantly increased virulence as determined by intracerebral pathogenicity index tests in day-old chickens. The mutations enhanced virus replication in vitro and in vivo and increased the plaque size in infected cell culture monolayers. Furthermore, they increased the activity of the viral replication complex as determined by an in vitro minigenome replication assay. Our data demonstrate that PPMV-1 replication in chickens results in mutations in the polymerase complex rather than the viral fusion protein, and that the virulence level of pigeon paramyxoviruses is directly related to the activity of the viral replication complex
Wigner crystallization in quantum electron bilayers
The phase diagram of quantum electron bilayers in zero magnetic field is
obtained using density functional theory. For large electron densities the
system is in the liquid phase, while for smaller densities the liquid may
freeze (Wigner crystallization) into four different crystalline phases; the
lattice symmetry and the critical density depend on the the inter-layer
distance. The phase boundaries between different Wigner crystals consist of
both first and second order transitions, depending on the phases involved, and
join the freezing curve at three different triple points.Comment: To appear in Europhys. Lett. (11 pages in REVTEX + 2 figures in
postscript
The split-operator technique for the study of spinorial wavepacket dynamics
The split-operator technique for wave packet propagation in quantum systems
is expanded here to the case of propagating wave functions describing
Schr\"odinger particles, namely, charge carriers in semiconductor
nanostructures within the effective mass approximation, in the presence of
Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We
also demonstrate that simple modifications to the expanded technique allow us
to calculate the time evolution of wave packets describing Dirac particles,
which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure
Exciton trapping in magnetic wire structures
The lateral magnetic confinement of quasi two-dimensional excitons into wire
like structures is studied. Spin effects are take into account and two
different magnetic field profiles are considered, which experimentally can be
created by the deposition of a ferromagnetic stripe on a semiconductor quantum
well with magnetization parallel or perpendicular to the grown direction of the
well. We find that it is possible to confine excitons into one-dimensional (1D)
traps. We show that the dependence of the confinement energy on the exciton
wave vector, which is related to its free direction of motion along the wire
direction, is very small. Through the application of a background magnetic
field it is possible to move the position of the trapping region towards the
edge of the ferromagnetic stripe or even underneath the stripe. The exact
position of this 1D exciton channel depends on the strength of the background
magnetic field and on the magnetic polarisation direction of the ferromagnetic
film.Comment: 10 pages, 7 figures, to be published in J. Phys: Condens. Matte
Dynamics of molecular nanomagnets in time-dependent external magnetic fields: Beyond the Landau-Zener-St\"{u}ckelberg model
The time evolution of the magnetization of a magnetic molecular crystal is
obtained in an external time-dependent magnetic field, with sweep rates in the
kT/s range. We present the 'exact numerical' solution of the time dependent
Schr\"{o}dinger equation, and show that the steps in the hysteresis curve can
be described as a sequence of two-level transitions between adiabatic states.
The multilevel nature of the problem causes the transition probabilities to
deviate significantly from the predictions of the Landau-Zener-St\"{u}ckelberg
model. These calculations allow the introduction of an efficient approximation
method that accurately reproduces the exact results. When including phase
relaxation by means of an appropriate master equation, we observe an interplay
between coherent dynamics and decoherence. This decreases the size of the
magnetization steps at the transitions, but does not modify qualitatively the
physical picture obtained without relaxation.Comment: 8 pages, 7 figure
Electron pairing: from metastable electron pair to bipolaron
Starting from the shell structure in atoms and the significant correlation
within electron pairs, we distinguish the exchange-correlation effects between
two electrons of opposite spins occupying the same orbital from the average
correlation among many electrons in a crystal. In the periodic potential of the
crystal with lattice constant larger than the effective Bohr radius of the
valence electrons, these correlated electron pairs can form a metastable energy
band above the corresponding single-electron band separated by an energy gap.
In order to determine if these metastable electron pairs can be stabilized, we
calculate the many-electron exchange-correlation renormalization and the
polaron correction to the two-band system with single electrons and electron
pairs. We find that the electron-phonon interaction is essential to
counterbalance the Coulomb repulsion and to stabilize the electron pairs. The
interplay of the electron-electron and electron-phonon interactions, manifested
in the exchange-correlation energies, polaron effects, and screening, is
responsible for the formation of electron pairs (bipolarons) that are located
on the Fermi surface of the single-electron band.Comment: 17 pages, 6 figures, Journal of Physics Communications 201
- …
