7,653 research outputs found

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Sensitive bi-enzymatic biosensor based on polyphenoloxidases–gold nanoparticles–chitosan hybrid film–graphene doped carbon paste electrode for carbamates detection

    Get PDF
    A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control

    (Bio)Sensing Strategies Based on Ionic Liquid-Functionalized Carbon Nanocomposites for Pharmaceuticals: Towards Greener Electrochemical Tools

    Get PDF
    The interaction of carbon-based nanomaterials and ionic liquids (ILs) has been thoroughly exploited for diverse electroanalytical solutions since the first report in 2003. This combination, either through covalent or non-covalent functionalization, takes advantage of the unique characteristics inherent to each material, resulting in synergistic effects that are conferred to the electrochemical (bio)sensing system. From one side, carbon nanomaterials offer miniaturization capacity with enhanced electron transfer rates at a reduced cost, whereas from the other side, ILs contribute as ecological dispersing media for the nanostructures, improving conductivity and biocompatibility. The present review focuses on the use of this interesting type of nanocomposites for the development of (bio)sensors specifically for pharmaceutical detection, with emphasis on the analytical (bio)sensing features. The literature search displayed the conjugation of more than 20 different ILs and several carbon nanomaterials (MWCNT, SWCNT, graphene, carbon nanofibers, fullerene, and carbon quantum dots, among others) that were applied for a large set (about 60) of pharmaceutical compounds. This great variability causes a straightforward comparison between sensors to be a challenging task. Undoubtedly, electrochemical sensors based on the conjugation of carbon nanomaterials with ILs can potentially be established as sustainable analytical tools and viable alternatives to more traditional methods, especially concerning in situ environmental analysisThis work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalization (POCI), and by Portuguese funds through FCT—Fundação para a CiĂȘncia e a Tecnologia in the framework of the project POCI-01-0145-FEDER-029547—PTDC/ASP-PES/29547/2017. This work received support by UIDB/50006/2020, UIDP/50006/ 2020 and LA/P/0008/2020 by the Fundação para a CiĂȘncia e a Tecnologia (FCT), MinistĂ©rio da CiĂȘncia, Tecnologia e Ensino Superior (MCTES) through national funds. T.M.B.F. Oliveira thanks the Brazilian agencies CNPq (Proc. 420261/2018-4 and 308108/2020-5) and FUNCAP (Proc. BP4-0172-00111.01.00/20) for their financial support, and he is grateful to UFCA and CAPES (Finance code 001) for supporting his investigations. F.W.P. Ribeiro thanks all support provided by the UFCA’s Pro-Rectory of Research and Innovation and the funding provided by FUNCAP-BPI (Proc. BP4-0172-00150.01.00/20) and CNPq (Proc. 406135/2018-5). P. de Lima-Neto thanks the financial support received from CNPq projects 408626/2018-6 and 304152/2018-8 and FUNCAP project FCT-00141-00011.01.00/18. A. N. Correia thanks the financial support received from CNPq projects: 305136/2018-6 and 405596/2018-9info:eu-repo/semantics/publishedVersio

    Tensile strength essay comparing three different platelet-rich fibrin membranes (L-PRF, A-PRF, and A-PRF plus): a mechanical and structural in vitro evaluation

    Get PDF
    Predictable outcomes intended by the application of PRF (platelet-rich fibrin) derivative membranes have created a lack of consideration for their consistency and functional integrity. This study aimed to compare the mechanical properties through tensile strength and analyze the structural organization among the membranes produced by L-PRF (leukocyte platelet-rich fibrin), A-PRF (advanced platelet-rich fibrin), and A-PRF+ (advanced platelet-rich fibrin plus) (original protocols) that varied in centrifugation speed and time. L-PRF (n = 12), A-PRF (n = 19), and A-PRF+ (n = 13) membranes were submitted to a traction test, evaluating the maximum and average traction. For maximum traction, 0.0020, 0.0022, and 0.0010 N·mm−2 were obtained for A-PRF, A-PRF+, and L-PRF, respectively; regarding the average resistance to traction, 0.0012, 0.0015, and 0.006 N·mm−2 were obtained, respectively (A-PRF+ > A-PRF > L-PRF). For all groups studied, significant results were found. In the surface morphology observations through SEM, the L-PRF matrix showed a highly compact surface with thick fibers present within interfibrous areas with the apparent destruction of red blood cells and leukocytes. The A-PRF protocol showed a dense matrix composed of thin and elongated fibers that seemed to follow a preferential and orientated direction in which the platelets were well-adhered. Porosity was also evident with a large diameter of the interfibrous spaces whereas A-PRF+ was the most porous platelet concentrate with the greatest fiber abundance and cell preservation. Thus, this study concluded that A-PRF+ produced membranes with significant and higher maximum traction results, indicating a better viscoelastic strength when stretched by two opposing forces.info:eu-repo/semantics/publishedVersio

    Chitosan-magnetite nanocomposite as a sensing platform to bendiocarb determination

    Get PDF
    A novel platform for carbamate-based pesticide quantification using a chitosan/magnetic iron oxide (Chit-Fe3O4) nanocomposite as a glassy carbon electrode (GCE) modifier is shown for an analytical methodology for determination of bendiocarb (BND). The BND oxidation signal using GCE/Chit-Fe3O4 compared with bare GCE was catalyzed, showing a 37.5% of current increase with the peak potential towards less positive values, showing method's increased sensitivity and selectivity. Using square-wave voltammetry (SWV), calibration curves for BND determination were obtained (n = 3), and calculated detection and quantification limits values were 2.09 × 10-6 mol L-1 (466.99 ppb) and 6.97 × 10-6 mol L-1 (1555.91 ppb), respectively. The proposed electroanalytical methodology was successfully applied for BND quantification in natural raw waters without any sample pretreatment, proving that the GCE/Chit-Fe3O4 modified electrode showed great potential for BND determination in complex samples. ᅟ Graphical abstract.The authors gratefully acknowledge the funding provided by the following Brazilian agencies: CNPq-INCT (proc. 573925/2008-9 and 573548/2008-0), CAPES/Funcap (2133/2012/proc. 23038.007973/2012-90 and PNE-0112-00048.01.00/16), CNPq (proc. 400223/2014-7, 303596/2014-7, 302801/2014-6 and 408790/2016-4), PRONEM/FUNCAP/CNPq (PNE-0112-00048.01.00/16) and PRONEX/Funcap (proc. PR2-0101-00030.01.00/15). The Fundação para a CiĂȘncia e a Tecnologia (FCT) and the FEDER, under Programme PT2020 (Project UID/QUI/50006/2013) and the project Qualidade e Segurança Alimentar- uma abordagem (nano) tecnolĂłgica (NORTE-01-0145-FEDER-000011) are also acknowledged for the financial funding. R.M.F. and J.C.D. acknowledge the financial support by Fondecyt 3170240 and Basal Program for Centers of Excellence, Grant FB0807 CEDENNA, CONICYT. C.P.S. thanks CAPES-PNPD for her grant.info:eu-repo/semantics/publishedVersio

    Electroanalysis of Imidacloprid Insecticide in River Waters Using Functionalized Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode

    Get PDF
    In this work, a functionalized multi-walled carbon nanotubes modified glassy carbon electrode (GCE/MWCNT-f) was optimized for the direct determination of imidacloprid (IMC) insecticide in river water. The functionalized material was characterized by infrared spectroscopy with Fourier transform (FTIR) and the modified electrode by scanning electron microscopy (SEM) and cyclic voltammetry (CV). Results revealed that the GCE/MWCNT-f effectively increased the response toward IMC reduction by enhancing the reduction peak current and decreasing the peak potential in comparison with the bare electrode. After optimizing the electroanalytical conditions, the GCE/MWCNT-f showed a linear voltammetric response at concentration ranging from 2.40 × 10−7 to 3.50 × 10−6 mol L−1, with detection and quantification limits of 4.15 × 10−7 mol L−1 and 1.38 × 10−6 mol L−1, respectively. The recovery rate of IMC in spiked river water samples varied from 90–95%. Thus, this sensor can be a promising tool for the analysis and monitoring of IMC in complex environmental matrices.info:eu-repo/semantics/publishedVersio

    NADPH Oxidase 5 Is a Pro‐Contractile Nox Isoform and a Point of Cross‐Talk for Calcium and Redox Signaling‐Implications in Vascular Function

    Get PDF
    Background NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells

    NADPH oxidase 5 is a pro‐contractile Nox isoform and a point of cross‐talk for calcium and redox signaling‐implications in vascular function

    Get PDF
    Background: NADPH Oxidase 5 (Nox5) is a calcium‐sensitive superoxide‐generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro‐contractile signaling and vascular function. Methods and Results: Transgenic mice expressing human Nox5 in a vascular smooth muscle cell–specific manner (Nox5 mice) and Rhodnius prolixus, an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5‐expressing mice, agonist‐induced vasoconstriction was exaggerated and endothelium‐dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N‐acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca2+]i, increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro‐contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild‐type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus, gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Conclusions: Nox5 is a pro‐contractile Nox isoform important in redox‐sensitive contraction. This involves calcium‐calmodulin and endoplasmic reticulum–regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro‐contractile molecular machinery in vascular smooth muscle cells
    • 

    corecore