138 research outputs found

    New Endovascular Method for Transvascular Exit of Arteries and Veins: Developed in Simulator, in Rat and in Rabbit with Full Clinical Integration

    Get PDF
    BACKGROUND: Endovascular technique has benefits vis-a-vis surgical access to organs with less accessible anatomical locations. To minimize surgical risk we propose a novel endovascular technique, to create parenchymal access through endovascular methods. METHODOLOGY/PRINCIPAL FINDINGS: We have developed, manufactured and tested an endovascular catheter with a depth limiting collar and a penetrating tip that is used to perforate vessels, thereby creating a working channel to the extra-vascular space. Computer simulations and subsequent interventions have been performed ex vivo and in vivo in both small and large animals by testing different prototypes. All tests were designed for testing extravascular hemostasis and absence of thrombo-embolic complications when exiting the vessels from the inside to the extra vascular space. We have deposited prototypes after intervention in vascular walls over a period of 14 days in rat with no impairment on blood flow and no signs of thrombo-embolic complications upon re-exploration (n = 7). We have also incorporated the catheter system with clinically available systems both in an ex vivo simulator setting and in a full scale clinical angiographical setting in rabbit were no bleeding (0%) in any of the interventions performed (n = 40). To prevent hemorrhage during termination of the procedure, a hollow electrolysis detachment-zone leaves the distal tip in the vessel-wall after the intervention. This has also been tested with absolute hemostasis in large animals (n = 6). CONCLUSIONS/SIGNIFICANCE: We have developed and tested a new system for transvascular tissue access in simulations, ex vivo and in vivo in small and large animals, integrating it with standard clinical catheters and angiographical environment, with absolute hemostasis and without thromboembolic complications. In a clinical setting for stem cell transplantation, local substance administration or tissue sampling, the benefit should be greatest in organs that are difficult or high-risk to access with other techniques, such as the pancreas, the central nervous system (CNS) and the heart

    Critical comments on EEG sensor space dynamical connectivity analysis

    Full text link
    Many different analysis techniques have been developed and applied to EEG recordings that allow one to investigate how different brain areas interact. One particular class of methods, based on the linear parametric representation of multiple interacting time series, is widely used to study causal connectivity in the brain. However, the results obtained by these methods should be interpreted with great care. The goal of this paper is to show, both theoretically and using simulations, that results obtained by applying causal connectivity measures on the sensor (scalp) time series do not allow interpretation in terms of interacting brain sources. This is because 1) the channel locations cannot be seen as an approximation of a source's anatomical location and 2) spurious connectivity can occur between sensors. Although many measures of causal connectivity derived from EEG sensor time series are affected by the latter, here we will focus on the well-known time domain index of Granger causality (GC) and on the frequency domain directed transfer function (DTF). Using the state-space framework and designing two simulation studies we show that mixing effects caused by volume conduction can lead to spurious connections, detected either by time domain GC or by DTF. Therefore, GC/DTF causal connectivity measures should be computed at the source level, or derived within analysis frameworks that model the effects of volume conduction. Since mixing effects can also occur in the source space, it is advised to combine source space analysis with connectivity measures that are robust to mixing

    How do the resting EEG preprocessing states affect the outcomes of postprocessing?

    Full text link
    Plenty of artifact removal tools and pipelines have been developed to correct the EEG recordings and discover the values below the waveforms. Without visual inspection from the experts, it is susceptible to derive improper preprocessing states, like the insufficient preprocessed EEG (IPE), and the excessive preprocessed EEG (EPE). However, little is known about the impacts of IPE or EPE on the postprocessing in the frequency, spatial and temporal domains, particularly as to the spectra and the functional connectivity (FC) analysis. Here, the clean EEG (CE) was synthesized as the ground truth based on the New-York head model and the multivariate autoregressive model. Later, the IPE and the EPE were simulated by injecting the Gaussian noise and losing the brain activities, respectively. Then, the impacts on postprocessing were quantified by the deviation caused by the IPE or EPE from the CE as to the 4 temporal statistics, the multichannel power, the cross spectra, the dispersion of source imaging, and the properties of scalp EEG network. Lastly, the association analysis was performed between the PaLOSi metric and the varying trends of postprocessing with the evolution of preprocessing states. This study shed light on how the postprocessing outcomes are affected by the preprocessing states and PaLOSi may be a potential effective quality metric

    The Syntactic and Semantic Processing of Mass and Count Nouns: An ERP Study

    Get PDF
    The present study addressed the question of whether count and mass nouns are differentially processed in the brain. In two different ERP (Event-Related Potentials) tasks we explored the semantic and syntactic levels of such distinction. Mass and count nouns typically differ in concreteness, hence the effect of this important variable was factorially examined in each task. Thus the stimuli presented were: count concrete, count abstract, mass concrete or mass abstract. The first experiment (concrete/abstract semantic judgment task) involved the interaction between the N400 concreteness effect and the Mass/Count condition, revealing a substantial effect between mass and count nouns at the semantic level. The second experiment (sentence syntactic violation task) showed a Mass/Count distinction on left anterior negativity (LAN) and on P600 components, confirming the difference at the syntactic level. This study suggests that the brain differentiates between count and mass nouns not only at the syntactic level but also at the semantic level. Implications for our understanding of the brain mechanisms underlying the Mass/Count distinction are discussed

    Life or Death: Prognostic Value of a Resting EEG with Regards to Survival in Patients in Vegetative and Minimally Conscious States

    Get PDF
    OBJECTIVE: To investigate the potentially prognostic value of a resting state electroencephalogram (EEG) with regards to the clinical outcome from vegetative and minimally conscious states (VS and MCS) in terms of survival six months after a brain injury. METHODS: We quantified a dynamic repertoire of EEG oscillations in resting condition with eyes closed in patients in VS and MCS. The exact composition of EEG oscillations was assessed by analysing the probability-classification of short-term EEG spectral patterns. RESULTS: Results demonstrated that (a) the diversity and the variability of EEG for Non-Survivors were significantly lower than for Survivors; and (b) a higher probability of mostly delta and slow-theta oscillations occurring either alone or in combination were found during the first assessment for patients with a bad outcome (i.e., those who died) within six months of an injury compared to patients who survived. At the same time, patients with a good outcome (i.e., those who survived) after six months post-injury had a higher probability of mostly fast-theta and alpha oscillations occurring either alone or in combination during the first assessment when compared to patients who died within six months of an injury. CONCLUSIONS: Resting state EEGs properly analysed may have a potentially prognostic value with regards to the outcome from VS or MCS in terms of survival six months after a brain injury. SIGNIFICANCE: This work may have implications for clinical care, rehabilitative programmes and medical-legal decisions for patients with impaired consciousness states after being in a coma due to acute brain injuries

    Spectral homogeneity cross frequencies can be a quality metric for the large-scale resting EEG preprocessing

    Full text link
    The brain projects require the collection of massive electrophysiological data, aiming to the longitudinal, sectional, or populational neuroscience studies. Quality metrics automatically label the data after centralized preprocessing. However, although the waveforms-based metrics are partially useful, they may be unreliable by neglecting the spectral profiles. Here, we detected the phenomenon of parallel log spectra (PaLOS) that the scalp EEG power in the log scale were parallel to each other from 10% of 2549 HBN EEG. This phenomenon was reproduced in 8% of 412 PMDT EEG from 4 databases. We designed the PaLOS index (PaLOSi) to indicate this phenomenon by decomposing the cross-spectra at different frequencies into the common principal component spaces. We found that the PaLOS biophysically implied a prominently dominant dipole in the source space which was implausible for the resting EEG. And it may be practically resulted from excessive preprocessing. Compared with the 1966 normative EEG cross-spectra, the HBN and the PMDT EEG with PaLOS presented generally much higher electrode pairwise coherences and higher similarity of coherence-based network patterns, which went against the known frequency dependent characteristic of coherence networks. We suggest the PaLOSi should lay in the range of 0.4-0.7 for large resting EEG quality assurance

    Reentrant Processing in Intuitive Perception

    Get PDF
    The process of perception requires not only the brain's receipt of sensory data but also the meaningful organization of that data in relation to the perceptual experience held in memory. Although it typically results in a conscious percept, the process of perception is not fully conscious. Research on the neural substrates of human visual perception has suggested that regions of limbic cortex, including the medial orbital frontal cortex (mOFC), may contribute to intuitive judgments about perceptual events, such as guessing whether an object might be present in a briefly presented fragmented drawing. Examining dense array measures of cortical electrical activity during a modified Waterloo Gestalt Closure Task, results show, as expected, that activity in medial orbital frontal electrical responses (about 250 ms) was associated with intuitive judgments. Activity in the right temporal-parietal-occipital (TPO) region was found to predict mOFC (∼150 ms) activity and, in turn, was subsequently influenced by the mOFC at a later time (∼300 ms). The initial perception of gist or meaning of a visual stimulus in limbic networks may thus yield reentrant input to the visual areas to influence continued development of the percept. Before perception is completed, the initial representation of gist may support intuitive judgments about the ongoing perceptual process

    Dynamic Near-Infrared Optical Imaging of 2-Deoxyglucose Uptake by Intracranial Glioma of Athymic Mice

    Get PDF
    BACKGROUND: It is recognized that cancer cells exhibit highly elevated glucose metabolism compared to non-tumor cells. We have applied in vivo optical imaging to study dynamic uptake of a near-infrared dye-labeled glucose analogue, 2-deoxyglucose (2-DG) by orthotopic glioma in a mouse model. METHODOLOGY AND PRINCIPAL FINDINGS: The orthotopic glioma model was established by surgically implanting U87-luc glioma cells into the right caudal nuclear area of nude mice. Intracranial tumor growth was monitored longitudinally by bioluminescence imaging and MRI. When tumor size reached >4 mm diameter, dynamic fluorescence imaging was performed after an injection of the NIR labeled 2-DG, IRDye800CW 2-DG. Real-time whole body images acquired immediately after i.v. infusion clearly visualized the near-infrared dye circulating into various internal organs sequentially. Dynamic fluorescence imaging revealed significantly higher signal intensity in the tumor side of the brain than the contralateral normal brain 24 h after injection (tumor/normal ratio, TNR = 2.8+/-0.7). Even stronger contrast was achieved by removing the scalp (TNR = 3.7+/-1.1) and skull (TNR = 4.2+/-1.1) of the mice. In contrast, a control dye, IRDye800CW carboxylate, showed little difference (1.1+/-0.2). Ex vivo fluorescence imaging performed on ultrathin cryosections (20 microm) of tumor bearing whole brain revealed distinct tumor margins. Microscopic imaging identified cytoplasmic locations of the 2-DG dye in tumor cells. CONCLUSION AND SIGNIFICANCE: Our results suggest that the near-infrared dye labeled 2-DG may serve as a useful fluorescence imaging probe to noninvasively assess intracranial tumor burden in preclinical animal models

    A Technical Comparison of Digital Frequency-Lowering Algorithms Available in Two Current Hearing Aids

    Get PDF
    Background: Recently two major manufacturers of hearing aids introduced two distinct frequency-lowering techniques that were designed to compensate in part for the perceptual effects of high-frequency hearing impairments. The Widex ‘‘Audibility Extender’ ’ is a linear frequency transposition scheme, whereas the Phonak ‘‘SoundRecover’ ’ scheme employs nonlinear frequency compression. Although these schemes process sound signals in very different ways, studies investigating their use by both adults and children with hearing impairment have reported significant perceptual benefits. However, the modifications that these innovative schemes apply to sound signals have not previously been described or compared in detail. Methods: The main aim of the present study was to analyze these schemes’technical performance by measuring outputs from each type of hearing aid with the frequency-lowering functions enabled and disabled. The input signals included sinusoids, flute sounds, and speech material. Spectral analyses were carried out on the output signals produced by the hearing aids in each condition. Conclusions: The results of the analyses confirmed that each scheme was effective at lowering certain high-frequency acoustic signals, although both techniques also distorted some signals. Most importantly, the application of either frequency-lowering scheme would be expected to improve the audibility of many sounds having salient high-frequenc

    Variability in Frontotemporal Brain Structure: The Importance of Recruitment of African Americans in Neuroscience Research

    Get PDF
    BACKGROUND: Variation in brain structure is both genetically and environmentally influenced. The question about potential differences in brain anatomy across populations of differing race and ethnicity remains a controversial issue. There are few studies specifically examining racial or ethnic differences and also few studies that test for race-related differences in context of other neuropsychiatric research, possibly due to the underrepresentation of ethnic minorities in clinical research. It is within this context that we conducted a secondary data analysis examining volumetric MRI data from healthy participants and compared the volumes of the amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebral volume between Caucasian and African-American participants. We discuss the importance of this finding in context of neuroimaging methodology, but also the need for improved recruitment of African Americans in clinical research and its broader implications for a better understanding of the neural basis of neuropsychiatric disorders. METHODOLOGY/PRINCIPAL FINDINGS: This was a case control study in the setting of an academic medical center outpatient service. Participants consisted of 44 Caucasians and 33 ethnic minorities. The following volumetric data were obtained: amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebrum. Each participant completed a 1.5 T magnetic resonance imaging (MRI). Our primary finding in analyses of brain subregions was that when compared to Caucasians, African Americans exhibited larger left OFC volumes (F (1,68) = 7.50, p = 0.008). CONCLUSIONS: The biological implications of our findings are unclear as we do not know what factors may be contributing to these observed differences. However, this study raises several questions that have important implications for the future of neuropsychiatric research
    corecore