22 research outputs found

    Bioinspired Synthesis of Reduced Graphene Oxide-Wrapped Geobacter sulfurreducens as a Hybrid Electrocatalyst for Efficient Oxygen Evolution Reaction

    Get PDF
    Doping/decorating of graphene or reduced graphene oxide (rGO) with heteroatoms provides a promising route for the development of electrocatalysts which will be useful in many technologies, including water splitting. However, current doping approaches are complicated, not eco-friendly, and not cost-effective. Herein, we report the synthesis of doped/decorated rGO for oxygen evolution reaction (OER) using a simple approach that is cost-effective, sustainable, and easy to scale up. The OER catalyst was derived from the reduction of GO by an exo-electron-transferring bacterium, Geobacter sulfurreducens. Various analytical tools indicate that OER active elements such as Fe, Cu, N, P, and S decorate the rGO flakes. The hybrid catalyst (i.e., Geobacter/rGO) produces a geometric current density of 10 mA cm–2 at an overpotential of 270 mV versus the reversible hydrogen electrode with a Tafel slope of 43 mV dec–1 and possesses high durability, as evidenced through 10 h of stability testing. Electrochemical analyses suggest the importance of Fe and its possible role as an active site for OER. Overall, this work represents a simple approach toward the development of an earth-abundant, eco-friendly, and highly active OER electrocatalyst for various applications such as solar fuel production, rechargeable metal–air batteries, and microbial electrosynthesis

    Roadmap on optical sensors

    Get PDF
    Optical sensors and sensing technologies are playing a more and more important role in our modern world. From micro-probes to large devices used in such diverse areas like medical diagnosis, defence, monitoring of industrial and environmental conditions, optics can be used in a variety of ways to achieve compact, low cost, stand-off sensing with extreme sensitivity and selectivity. Actually, the challenges to the design and functioning of an optical sensor for a particular application requires intimate knowledge of the optical, material, and environmental properties that can affect its performance. This roadmap on optical sensors addresses different technologies and application areas. It is constituted by twelve contributions authored by world-leading experts, providing insight into the current state-of-the-art and the challenges their respective fields face. Two articles address the area of optical fibre sensors, encompassing both conventional and specialty optical fibres. Several other articles are dedicated to laser-based sensors, micro- and nano-engineered sensors, whispering-gallery mode and plasmonic sensors. The use of optical sensors in chemical, biological and biomedical areas is discussed in some other papers. Different approaches required to satisfy applications at visible, infrared and THz spectral regions are also discussed

    Design and syntheses of anisotropic metal nanostructures with tailored morphology for applications in electro-catalysis and surface enhanced raman scattering

    No full text
    The main goal of this thesis is to design and develop synthesis methods which enable the preparation of more efficient noble metal nanoparticles with tailored morphologies for optical, catalytic and SERS applications. In chapter 2, we demonstrate a two-step seed-mediated growth method to synthesize a new class of spiky Ag-Au octahedral nanoparticles with tunable spike length from 10 – 130 nm with sharp tips. Spatially resolved EELS study on individual spiky Ag-Au nanoparticles illustrates multipolar plasmonic responses. In chapter 3, we develop a one-step solution phase synthesis of tunable nanoporous gold (np-Au) nanoparticles and demonstrated their superior catalytic activity towards methanol electro-oxidation. Furthermore, we demonstrate a seed mediated route to synthesize morphology controlled np-Au nanoparticles (chapter 4) with reduced symmetry and ligament size control down to <6 nm. In the last chapter 5, we demonstrate np-Au nanoparticles with reduced symmetry, will hold intense electromagnetic fields exploitable for location dependent SERS on single np-Au nanoparticles under near-infrared excitation.DOCTOR OF PHILOSOPHY (SPMS

    Understanding the synthetic pathway of a single-phase quarternary semiconductor using surface-enhanced raman scattering : a case of Wurtzite Cu2ZnSnS4 nanoparticles

    No full text
    Single-phase Cu2ZnSnS4 (CZTS) is an essential prerequisite toward a high-efficiency thin-film solar cell device. Herein, the selective phase formation of single-phase CZTS nanoparticles by ligand control is reported. Surface-enhanced Raman scattering (SERS) spectroscopy is demonstrated for the first time as a characterization tool for nanoparticles to differentiate the mixed compositional phase (e.g., CZTS, CTS, and ZnS), which cannot be distinguished by X-ray diffraction. Due to the superior selectivity and sensitivity of SERS, the growth mechanism of CZTS nanoparticle formation by hot injection is revealed to involve three growth steps. First, it starts with nucleation of Cu2–xS nanoparticles, followed by diffusion of Sn4+ into Cu2–xS nanoparticles to form the Cu3SnS4 (CTS) phase and diffusion of Zn2+ into CTS nanoparticles to form the CZTS phase. In addition, it is revealed that single-phase CZTS nanoparticles can be obtained via balancing the rate of CTS phase formation and diffusion of Zn2+ into the CTS phase. We demonstrate that this balance can be achieved by 1 mL of thiol with Cu(OAc)2, Sn(OAc)4, and Zn(acac)2 metal salts to synthesize the CZTS phase without the presence of a detectable binary/ternary phase with SERS.NRF (Natl Research Foundation, S’pore)Accepted versio

    Unlocking the Potential of Single Atoms Loaded Geobacter Hybrid Catalyst as Bifunctional Electrocatalyst for Water Splitting

    No full text
    Single-atom metal (SA-M) catalysts with high dispersion of active metal sites allow maximum atomic utilization. However, conventional synthesis of SA-M catalysts involves high-temperature treatments, leading to a low yield with random distribution of atoms. Herein, a facile method to synthesize SA-M catalysts (M = Fe, Ir, Pt, Ru, Cu, or Pd) in a single step at ambient temperature, using the extracellular electron transfer capability of Geobacter sulfurreducens (GS), is presented. Interestingly, the SA-M is coordinated to three nitrogen (N) atoms adopting an MN3 on the surface of GS. Dry samples of SA-Ir@GS without further heat treatments show exceptionally high activity for OER when compared to benchmark IrO2 catalyst and comparable HER activity to commercial 10 wt.% Pt/C. The SA-Ir@GS electrocatalyst exhibits the best water‐splitting performance compared to other SA-M@GS, showing a low applied potential of 1.65 V to achieve 10 mA cm−2 in 1.0 M KOH solution with cycling over 5 h. The density functional calculations reveal that the large adsorption energy of H2O and moderate adsorption energies of reactants and reaction intermediates for SA-Ir@GS favorably improve its activity. This nature-based facile synthesis method of SA-M at room temperature provides a versatile platform for the preparation of other transition metal SA-M catalysts for various energy-related applications by merely altering the metal precursors. <br /

    Precision synthesis : designing hot spots over hot spots via selective gold deposition on silver octahedra edges

    No full text
    A major challenge in plasmonic hot spot fabrication is to efficiently increase the hot spot volumes on single metal nanoparticles to generate stronger signals in plasmon-enhanced applications. Here, the synthesis of designer nanoparticles, where plasmonic-active Au nanodots are selectively deposited onto the edge/tip hot spot regions of Ag nanoparticles, is demonstrated using a two-step seed-mediated precision synthesis approach. Such a “hot spots over hot spots” strategy leads to an efficient enhancement of the plasmonic hot spot volumes on single Ag nanoparticles. Through cathodoluminescence hyperspectral imaging of these selective edge gold-deposited Ag octahedron (SEGSO), the increase in the areas and emission intensities of hot spots on Ag octahedra are directly visualized after Au deposition. Single-particle surface-enhanced Raman scattering (SERS) measurements demonstrate 10-fold and 3-fold larger SERS enhancement factors of the SEGSO as compared to pure Ag octahedra and non-selective gold-deposited Ag octahedra (NSEGSO), respectively. The experimental results corroborate well with theoretical simulations, where the local electromagnetic field enhancement of our SEGSO particles is 15-fold and 1.3-fold stronger than pure Ag octahedra and facet-deposited particles, respectively. The growth mechanisms of such designer nanoparticles are also discussed together with a demonstration of the versatility of this synthetic protocol

    Bimetallic Platonic Janus Nanocrystals

    No full text
    We demonstrate the creation of Ag-based bimetallic platonic Janus nanostructures by confining galvanic replacement reaction at a nanoscale interface on highly symmetrical nanostructures such as Ag nanocubes and nanooctahedra using reactive microcontact printing (ÎŒCP). The extent of galvanic replacement reaction can be controlled kinetically to derive Janus nanostructures with Au nanodots deposited on either one or multiple facets of Ag nanocubes. The selective deposition of Au dots on a single facet of Ag nanocubes breaks the cubic symmetry and brings about unique and anisotropic plasmonic responses. High-resolution cathodoluminescence hyperspectral imaging of single Janus nanocube demonstrates that surface plasmon resonances corresponding to Au and Ag can be excited at different spots on one Janus nanocube. In addition, we demonstrate the fabrication of alternating Janus/non-Janus segments on 2D Ag nanowires by using a line-patterned polydimethylsiloxane (PDMS) stamp for galvanic replacement. Aside from Au, Pt and Pd can also be selectively deposited onto Ag nanocubes. These Janus nanostructures may find important applications in the field of plasmon-enhanced catalysis

    A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application

    No full text
    The effective number of surface-enhanced Raman spectroscopy (SERS) active hot spots on plasmonic nanostructures is the most crucial factor in ensuring high sensitivity in SERS sensing platform. Here we demonstrate a chemical etching method to increase the surface roughness of one-dimensional Ag nanowires, targeted at creating more SERS active hot spots along Ag nanowire’s longitudinal axis for increased SERS detection sensitivity. Silver nanowires were first synthesized by the conventional polyol method and then subjected to chemical etching by NH4OH and H2O2 mixture. The surfaces of silver nanowires were anisotropically etched off to create miniature “beads on a string” features with increased surface roughness while their crystallinity was preserved. Mapping of single-nanowire SERS measurements showed that the chemical etching method has overcome the limitation of conventional one-dimensional Ag nanowires with limited SERS active area at the tips to produce etched Ag nanowires with an increase in Raman hot spots and polarization-independent SERS signals across tens of micrometers length scale

    Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties

    No full text
    Spiky nanoparticles exhibit higher overall plasmonic excitation cross sections than their nonspiky peers. In this work, we demonstrate a two-step seed-mediated growth method to synthesize a new class of spiky Ag–Au octahedral nanoparticles with the aid of a high molecular weight poly­(vinylpyrrolidone) polymer. The length of the nanospikes can be controlled from 10 to 130 nm with sharp tips by varying the amount of gold precursor added and the injection rates. Spatially resolved electron energy-loss spectroscopy (EELS) study and finite-difference time-domain (FDTD) simulations on individual spiky Ag–Au nanoparticles illustrate multipolar plasmonic responses. While the octahedral core retains its intrinsic plasmon response, the spike exhibits a hybridized dipolar surface plasmon resonance at lower energy. With increasing spike length from 50 to 130 nm, the surface plasmon of the spike can be tuned from 1.16 to 0.78 eV. The electric field at the spike region increases rapidly with increasing spike length, with a 10<sup>4</sup> field enhancement achieved at the tips of 130-nm spike. The results highlight that it is important to synthesize long spikes (>50 nm) on nanoparticles to achieve strong electric field enhancement. A hypothesis for the formation of sharp spikes is proposed based on our studies using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (TEM)

    Synthesis of Spiky Ag–Au Octahedral Nanoparticles and Their Tunable Optical Properties

    No full text
    Spiky nanoparticles exhibit higher overall plasmonic excitation cross sections than their nonspiky peers. In this work, we demonstrate a two-step seed-mediated growth method to synthesize a new class of spiky Ag–Au octahedral nanoparticles with the aid of a high molecular weight poly­(vinylpyrrolidone) polymer. The length of the nanospikes can be controlled from 10 to 130 nm with sharp tips by varying the amount of gold precursor added and the injection rates. Spatially resolved electron energy-loss spectroscopy (EELS) study and finite-difference time-domain (FDTD) simulations on individual spiky Ag–Au nanoparticles illustrate multipolar plasmonic responses. While the octahedral core retains its intrinsic plasmon response, the spike exhibits a hybridized dipolar surface plasmon resonance at lower energy. With increasing spike length from 50 to 130 nm, the surface plasmon of the spike can be tuned from 1.16 to 0.78 eV. The electric field at the spike region increases rapidly with increasing spike length, with a 10<sup>4</sup> field enhancement achieved at the tips of 130-nm spike. The results highlight that it is important to synthesize long spikes (>50 nm) on nanoparticles to achieve strong electric field enhancement. A hypothesis for the formation of sharp spikes is proposed based on our studies using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (TEM)
    corecore