30 research outputs found

    Migrating semidiurnal tide during the September Equinox transition in the Northern Hemisphere

    Get PDF
    Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension simulations are used to investigate the solar migrating semidiurnal tide (SW2) around September equinox at middle to high latitudes in the Northern Hemisphere. A pronounced minimum in SW2 occurs around September equinox, and is characterized by a ∌50% reduction in tidal amplitudes for 20–30 days. Analysis of the simulation results indicates that the SW2 minimum occurs due to the seasonal transition of the zonal mean zonal winds, which alter the generation and propagation of different symmetric and antisymmetric modes of SW2. In particular, the antisymmetric modes notably decrease due to the more hemispherically symmetric zonal winds around equinox. It is further demonstrated that interannual variability in the timing of the SW2 minimum is related to the timing of the seasonal transition of the zonal mean zonal winds in the middle atmosphere. This leads to an earlier occurrence of the SW2 minimum during years when the seasonal transition occurs earlier, such as the recent 2019 September equinox which saw an earlier transition of the Southern Hemisphere zonal mean zonal winds following the occurrence of a sudden stratosphere warming. The connection between the timing of the SW2 minimum in the Northern Hemisphere and the timing of the seasonal transition in the middle atmosphere winds is confirmed by seasonal variability of 12‐h tides deduced from specular meteor radar observations at middle to high latitudes in the Northern Hemisphere

    Mesospheric anomalous diffusion during noctilucent cloud scenarios

    Get PDF
    The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average by about 10&thinsp;% at times and locations where a lidar observes noctilucent clouds (NLCs). This high-latitude effect has been attributed to the presence of charged NLC after exploring possible contributions from thermal tides. To make this claim, the current study evaluates data from three stations at high, middle, and low latitudes for the years 2012 to 2016 to show that NLC influence on the meteor trail diffusion is independent of thermal tides. The observations also show that the meteor trail diffusion enhancement during NLC cover exists only at high latitudes and near the peaks of NLC layers. This paper discusses a number of possible explanations for changes in the regions with NLCs and leans towards the hypothesis that the relative abundance of background electron density plays the leading role. A more accurate model of the meteor trail diffusion around NLC particles would help researchers determine mesospheric temperature and neutral density profiles from meteor radars at high latitudes.</p

    Evidence for stratospheric sudden warming effects on the upper thermosphere derived from satellite orbital decay data during 1967–2013

    Get PDF
    We investigate possible impact of stratospheric sudden warmings (SSWs) on the thermosphere by using long-term data of the global average thermospheric total mass density derived from satellite orbital drag during 1967–2013. Residuals are analyzed between the data and empirical Global Average Mass Density Model (GAMDM) that takes into account density variability due to solar activity, season, geomagnetic activity, and long-term trend. A superposed epoch analysis of 37 SSW events reveals a density reduction of 3–7% at 250–575 km around the time of maximum polar vortex weakening. The relative density perturbation is found to be greater at higher altitudes. The temperature perturbation is estimated to be −7.0 K at 400 km. We show that the density reduction can arise from enhanced wave forcing from the lower atmosphere

    Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM‐X 2.0)

    Get PDF
    Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X). Among them, the most important are the self‐consistent solution of global electrodynamics, and transport of O+ in the F‐region. Other ionosphere developments include time‐dependent solution of electron/ion temperatures, metastable O+ chemistry, and high‐cadence solar EUV capability. Additional developments of the thermospheric components are improvements to the momentum and energy equation solvers to account for variable mean molecular mass and specific heat, a new divergence damping scheme, and cooling by O(3P) fine structure. Simulations using this new version of WACCM‐X (2.0) have been carried out for solar maximum and minimum conditions. Thermospheric composition, density, and temperatures are in general agreement with measurements and empirical models, including the equatorial mass density anomaly and the midnight density maximum. The amplitudes and seasonal variations of atmospheric tides in the mesosphere and lower thermosphere are in good agreement with observations. Although global mean thermospheric densities are comparable with observations of the annual variation, they lack a clear semiannual variation. In the ionosphere, the low‐latitude E × B drifts agree well with observations in their magnitudes, local time dependence, seasonal, and solar activity variations. The prereversal enhancement in the equatorial region, which is associated with ionospheric irregularities, displays patterns of longitudinal and seasonal variation that are similar to observations. Ionospheric density from the model simulations reproduces the equatorial ionosphere anomaly structures and is in general agreement with observations. The model simulations also capture important ionospheric features during storms

    Solved and unsolved riddles about low-latitude daytime valley region plasma waves and 150-km echoes

    Get PDF
    The Earth’s atmosphere near both the geographic and magnetic equators and at altitudes between 120 and 200 km is called the low-latitude valley region (LLVR) and is among the least understood regions of the ionosphere/thermosphere due to its complex interplay of neutral dynamics, electrodynamics, and photochemistry. Radar studies of the region have revealed puzzling daytime echoes scattered from between 130 and 170 km in altitude. The echoes are quasi-periodic and are observed in solar-zenith-angle dependent layers. Populations with two distinct types of spectral features are observed. A number of radars have shown scattering cross-sections with different seasonal and probing-frequency dependencies. The sources and configurations of the so-called 150-km echoes and the related irregularities have been long-standing riddles for which some solutions are finally starting to emerge as will be described in this review paper. Although the 150-km echoes were discovered in the early 1960s, their practical significance and implications were not broadly recognized until the early 1990s, and no compelling explanations of their generation mechanisms and observed features emerged until about a decade ago. Now, more rapid progress is being made thanks to a multi-disciplinary team effort described here and recent developments in kinetic simulations and theory: 18 of 27 riddles to be described in this paper stand solved (and a few more partially solved) at this point in time. The source of the irregularities is no longer a puzzle as compelling evidence has emerged from simulations and theory, presented since 2016 that they are being caused by photoelectrons driving an upper hybrid plasma instability process. Another resolved riddle concerns the persistent gaps observed between the 150-km scattering layers—we now understand that they are likely to be the result of enhanced thermal Landau damping of the upper hybrid instability process at upper hybrid frequencies matching the harmonics of the electron gyrofrequency. The remaining unsolved riddles, e.g., minute-scale variability, multi-frequency dependence, to name a few, are still being explored observationally and theoretically—they are most likely unidentified consequences of interplay between plasma physics, photochemistry, and lower atmospheric dynamic processes governing the LLVR

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Semi‐Monthly Lunar Tide Oscillation of f

    No full text

    How Sudden stratospheric warmings affect the whole atmosphere

    Get PDF
    Open Access. Text © 2018. The authors. CC BY 3.0 Except where otherwise noted, images are subject to copyright. Any reuse without express permission from the copyright owner is prohibited.Ideas for this article were developed during international team meetings supported by the International Space Science Institute (ISSI; Bern, Switzerland). The National Center for Atmospheric Research is supported by the U.S. National Science Foundation. J.L.C., C.S., and T.A.S. are partly supported by the German Research Foundation’s Priority Program 1788 “DynamicEarth.” L.P.G. is supported by NASA through LWS grant NNX13AI62G and by U.S. NSF grant AGS-1343056. H.S. is partly supported by the German Research Foundation (DFG) under FOR 1898 (MS-GWaves), project SCHM 2158/5-1 (GWING). V.L.H. is supported by U.S. NSF AGS-1343031, NASA LWS NNX14AH54G, and NASA HGI NNX17AB80G. B.F. is supported by the Spanish MCINN under grant ESP2014-54362-P and EC FEDER funds
    corecore