35 research outputs found

    Langerhans cells in hypospadias : an analysis of Langerin (CD207) and HLA-DR on epidermal sheets and full thickness skin sections

    Get PDF
    Background: Hypospadias are among the most common genital malformations. Langerhans Cells (LCs) play a pivotal role in HIV and HPV infection. The migration of LC precursors to skin coincides with the embryonic period of hypospadias development and genetic alterations leading to the formation of hypospadias impact the development of ectodermally derived tissues. We hypothesized that this might be associated with a difference in frequency or morphology of epidermal and dermal LCs in hypospadias patients. Methods: A total of 43 patients from two centers were prospectively included into this study after parental consent and ethics approval. Epidermal and dermal sheets were prepared from skin samples of 26 patients with hypospadias, 13 patients without penile malformations and 4 patients with penile malformations other than hypospadias. Immunofluorescence staining of sheets was performed with anti-HLA-DR-FITC and anti-CD207/Langerin-A594 antibodies. Skin sections from 11 patients without penile malformation and 11 patients with hypospadias were stained for Langerin. Frequencies as well as morphology and distribution of epidermal and dermal LCs on sheets and sections were microscopically evaluated. Cell counts were compared by unpaired t-tests. Results: There was no difference in frequency of epidermal LCs, Neither on sheets (87361 vs. 940 +/- 84LCs/mm(2), p=0.522) nor on sections (32 +/- 3 vs. 30 +/- 2LCs/mm(2), p=0.697). Likewise, the frequency of dermal LCs (5,9 +/- 0,9 vs. 7.5 +/- 1.3LCs/mm(2), p=0.329) was comparable between patients with hypospadias and without penile malformation. No differences became apparent in subgroup analyses, comparing distal to proximal hypospadias (p=0.949), younger and older boys (p=0.818) or considering topical dihydrotestosterone treatment prior to surgery (p=0.08). The morphology of the LCs was not different comparing hypospadias patients with boys without penile malformations. Conclusions: p id=Par Cs are present in similar frequencies and with a comparable morphology and distribution in patients with hypospadias as compared to children without penile malformations. This suggests that patients with hypospadias are not different from patients with normal penile development considering this particular compartment of their skin immunity

    Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8–12

    Get PDF
    Balance orientation depends on the precise operation of the vestibular end organs and the vestibular ganglion neurons. Previous research on the assemblage of the neuronal network in the developing fetal vestibular organ has been limited to data from animal models. Insights into the molecular expression profiles and signaling moieties involved in embryological development of the human fetal inner ear have been limited. We present an investigation of the cells of the vestibular end organs with specific focus on the hair cell differentiation and innervation pattern using an uninterrupted series of unique specimens from gestational weeks 8-12. Nerve fibers positive for peripherin innervate the entire fetal crista and utricle. While in rodents only the peripheral regions of the cristae and the extra-striolar region of the statolithic organs are stained. At week 9, transcription factors PAX2 and PAX8 were observed in the hair cells whereas PAX6 was observed for the first time among the supporting cells of the cristae and the satellite glial cells of the vestibular ganglia. Glutamine synthetase, a regulator of the neurotransmitter glutamate, is strongly expressed among satellite glia cells, transitional zones of the utricle and supporting cells in the sensory epithelium. At gestational week 11, electron microscopic examination reveals bouton contacts at hair cells and first signs of the formation of a protocalyx at type I hair cells. Our study provides first-hand insight into the fetal development of the vestibular end organs as well as their pattern of innervation by means of immunohistochemical and EM techniques, with the aim of contributing toward our understanding of balance development

    Characterization of DLK1(PREF1)+/CD34+ cells in vascular stroma of human white adipose tissue

    Get PDF
    AbstractSorting of native (unpermeabilized) SVF-cells from human subcutaneous (s)WAT for cell surface staining (cs) of DLK1 and CD34 identified three main populations: ~10% stained cs-DLK1+/cs-CD34−, ~20% cs-DLK1+/cs-CD34+dim and ~45% cs-DLK1−/cs-CD34+. FACS analysis after permeabilization showed that all these cells stained positive for intracellular DLK1, while CD34 was undetectable in cs-DLK1+/cs-CD34− cells. Permeabilized cs-DLK1−/cs-CD34+ cells were positive for the pericyte marker α-SMA and the mesenchymal markers CD90 and CD105, albeit CD105 staining was dim (cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31−). Only these cells showed proliferative and adipogenic capacity. Cs-DLK1+/cs-CD34− and cs-DLK1+/cs-CD34+dim cells were also α-SMA+ but expressed CD31, had a mixed hematopoietic and mesenchymal phenotype, and could neither proliferate nor differentiate into adipocytes. Histological analysis of sWAT detected DLK1+/CD34+ and DLK1+/CD90+ cells mainly in the outer ring of vessel-associated stroma and at capillaries. DLK1+/α-SMA+ cells were localized in the CD34− perivascular ring and in adventitial vascular stroma. All these DLK1+ cells possess a spindle-shaped morphology with extremely long processes. DLK1+/CD34+ cells were also detected in vessel endothelium. Additionally, we show that sWAT contains significantly more DLK1+ cells than visceral (v)WAT. We conclude that sWAT has more DKL1+ cells than vWAT and contains different DLK1/CD34 populations, and only cs-DLK1−/cs-CD34+/CD90+/CD105+dim/α-SMA+/CD45−/CD31− cells in the adventitial vascular stroma exhibit proliferative and adipogenic capacity

    Palisade Endings Are a Constant Feature in the Extraocular Muscles of Frontal-Eyed, But Not Lateral-Eyed, Animals

    Get PDF
    Purpose To test whether palisade endings are a general feature of mammalian extraocular muscles (EOMs). Methods Thirteen species, some frontal-eyed (human, monkey, cat, and ferret), and others lateral-eyed (pig, sheep, calf, horse, rabbit, rat, mouse, gerbil, and guinea pig) were analyzed. Palisade endings were labeled by using different combinations of immunofluorescence techniques. Three-dimensional reconstructions of immunolabeled palisade endings were done. Results In all frontal-eyed species, palisade endings were a consistent feature in the rectus EOMs. Their total number was high and they exhibited an EOM-specific distribution. In particular, the number of palisade endings in the medial recti was significantly higher than in the other rectus muscles. In the lateral-eyed animals, palisade endings were infrequent and, when present, their total number was rather low. They were only found in ungulates (sheep, calf, pig, and horse) and in rabbit. In rodents (rat, guinea pig, mouse, and gerbil) palisade endings were found infrequently (e.g., rat) or were completely absent. Palisade endings in frontal-eyed species and in some lateral-eyed species (pig, sheep, calf, and horse) had a uniform morphology. They generally lacked α-bungarotoxin staining, with a few exceptions in primates. Palisade endings in other lateral-eyed species (rabbit and rat) exhibited a simplified morphology and bound α-bungarotoxin. Conclusions Palisade endings are not a universal feature of mammalian EOMs. So, if they are proprioceptors, not all species require them. Because in frontal-eyed species, the medial rectus muscle has the highest number of palisade endings, they likely play a special role in convergence

    Visualization of the Membranous Labyrinth and Nerve Fiber Pathways in Human and Animal Inner Ears Using MicroCT Imaging

    Get PDF
    Design and implantation of bionic implants for restoring impaired hair cell function relies on accurate knowledge about the microanatomy and nerve fiber pathways of the human inner ear and its variation. Non-destructive isotropic imaging of soft tissues of the inner ear with lab-based microscopic X-ray computed tomography (microCT) offers high resolution but requires contrast enhancement using compounds with high X-ray attenuation. We evaluated different contrast enhancement techniques in mice, cat, and human temporal bones to differentially visualize the membranous labyrinth, sensory epithelia, and their innervating nerves together with the facial nerve and middle ear. Lugol’s iodine potassium iodine (I2KI) gave high soft tissue contrast in ossified specimens but failed to provide unambiguous identification of smaller nerve fiber bundles inside small bony canals. Fixation or post-fixation with osmium tetroxide followed by decalcification in EDTA provided superior contrast for nerve fibers and membranous structures. We processed 50 human temporal bones and acquired microCT scans with 15 ÎŒm voxel size. Subsequently we segmented sensorineural structures and the endolymphatic compartment for 3D representations to serve for morphometric variation analysis. We tested higher resolution image acquisition down to 3.0 ÎŒm voxel size in human and 0.5 ÎŒm in mice, which provided a unique level of detail and enabled us to visualize single neurons and hair cells in the mouse inner ear, which could offer an alternative quantitative analysis of cell numbers in smaller animals. Bigger ossified human temporal bones comprising the middle ear and mastoid bone can be contrasted with I2KI and imaged in toto at 25 ÎŒm voxel size. These data are suitable for surgical planning for electrode prototype placements. A preliminary assessment of geometric changes through tissue processing resulted in 1.6% volume increase caused during decalcification by EDTA and 0.5% volume increase caused by partial dehydration to 70% ethanol, which proved to be the best mounting medium for microCT image acquisition

    HCN channels in the mammalian cochlea : Expression pattern, subcellular location, and age-dependent changes

    No full text
    Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage-gated channels, hyperpolarization-activated cyclic nucleotide-gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co-expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age-related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, -2, and -4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, -2, and -4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age-related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up- or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants

    Intermediate filaments spatially organize intracellular nanostructures to produce the bright structural blue of ribbontail stingrays across ontogeny

    Get PDF
    In animals, pigments but also nanostructures determine skin coloration, and many shades are produced by combining both mechanisms. Recently, we discovered a new mechanism for blue coloration in the ribbontail stingray Taeniura lymma, a species with electric blue spots on its yellow-brown skin. Here, we characterize finescale differences in cell composition and architecture distinguishing blue from non-blue regions, the first description of elasmobranch chromatophores and the nanostructures responsible for the stingray’s novel structural blue, contrasting with other known mechanisms for making nature’s rarest color. In blue regions, the upper dermis comprised a layer of chromatophore units —iridophores and melanophores entwined in compact clusters framed by collagen bundles— this structural stability perhaps the root of the skin color’s robustness. Stingray iridophores were notably different from other vertebrate light-reflecting cells in having numerous fingerlike processes, which surrounded nearby melanophores like fists clenching a black stone. Iridophores contained spherical iridosomes enclosing guanine nanocrystals, suspended in a 3D quasi-order, linked by a cytoskeleton of intermediate filaments. We argue that intermediate filaments form a structural scaffold with a distinct optical role, providing the iridosome spacing critical to produce the blue color. In contrast, black-pigmented melanosomes within melanophores showed space-efficient packing, consistent with their hypothesized role as broadband-absorbers for enhancing blue color saturation. The chromatophore layer’s ultrastructure was similar in juvenile and adult animals, indicating that skin color and perhaps its ecological role are likely consistent through ontogeny. In non-blue areas, iridophores were replaced by pale cells, resembling iridophores in some morphological and nanoscale features, but lacking guanine crystals, suggesting that the cell types arise from a common progenitor cell. The particular cellular associations and structural interactions we demonstrate in stingray skin suggest that pigment cells induce differentiation in the progenitor cells of iridophores, and that some features driving color production may be shared with bony fishes, although the lineages diverged hundreds of millions of years ago and the iridophores themselves differ drastically

    Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications

    Get PDF
    Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function

    Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications

    No full text
    Human spiral ganglion (SG) neurons show remarkable survival properties and maintain electric excitability for a long time after complete deafness and even separation from the organ of Corti, features essential for cochlear implantation. Here, we analyze and compare the localization and distribution of gap junction (GJ) intercellular channels and connexin 43 (Cx43) in cells surrounding SG cell bodies in man and guinea pig by using transmission electron microscopy and confocal immunohistochemistry. GJs and Cx43 expression has been recognized in satellite glial cells (SGCs) in non-myelinating sensory ganglia including the human SG. In man, SG neurons can survive as mono-polar or "amputated" cells with unbroken central projections following dendrite degeneration and consolidation of the dendrite pole. Cx43-mediated GJ signaling between SGCs is believed to play a key role in this "healing" process and could explain the unique preservation of human SG neurons and the persistence of cochlear implant function

    Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells.

    No full text
    INTRODUCTION: We describe a novel 3D co-culture model using non-small cell lung cancer (NSCLC) cell lines in combination with lung fibroblasts. This model allows the investigation of tumour-stroma interactions and addresses the importance of having a more in vivo like cell culture model. METHODS: Automation-compatible multi-well hanging drop microtiter plates were used for the production of 3D mono- and co-cultures. In these hanging drops the two NSCLC cell lines A549 and Colo699 were cultivated either alone or co-cultured with lung fibroblasts. The viability of tumour spheroids was confirmed after five and ten days by using Annexin V/Propidium Iodide staining for flow-cytometry. Tumour fibroblast spheroid formation was characterized by scanning electron microscope (SEM), semi-thin sections, fluorescence microscope and immunohistochemistry (IHC). In addition to conventional histology, protein expression of E-Cadherin, vimentin, Ki67, fibronectin, cytokeratin 7 and α-smooth muscle actin (α-SMA) was investigated by IHC. RESULTS: Lower viability was observed in A549 monocultures compared to co-cultures, whereas Colo699 monocultures showed better viability compared to co-cultures. Ki67 expression varied significantly between mono- and co-cultures in both tumour cell lines. An increase of vimentin and decreased E-Cadherin expression could be detected during the course of the cultivation suggesting a transition to a more mesenchymal phenotype. Furthermore, the fibroblast cell line showed an expression of α-SMA only in co-culture with the cancer cell line A549, thereby indicating a mesenchymal to mesenchymal shift to an even more myofibroblast phenotype. CONCLUSION: We demonstrate that our method is a promising tool for the generation of tumour spheroid co-cultures. Furthermore, these spheroids allow the investigation of tumour-stroma interactions and a better reflection of in vivo conditions of cancer cells in their microenvironment. Our method holds potential to contribute to the development of anti-cancer agents and support the search for biomarkers
    corecore