1,619 research outputs found

    Autonomous navigation accuracy using simulated horizon sensor and sun sensor observations

    Get PDF
    A relatively simple autonomous system which would use horizon crossing indicators, a sun sensor, a quartz oscillator, and a microprogrammed computer is discussed. The sensor combination is required only to effectively measure the angle between the centers of the Earth and the Sun. Simulations for a particular orbit indicate that 2 km r.m.s. orbit determination uncertainties may be expected from a system with 0.06 deg measurement uncertainty. A key finding is that knowledge of the satellite orbit plane orientation can be maintained to this level because of the annual motion of the Sun and the predictable effects of Earth oblateness. The basic system described can be updated periodically by transits of the Moon through the IR horizon crossing indicator fields of view

    In The Old Town Hall : A Comedy Waltz Song

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1879/thumbnail.jp

    Elastodynamics of radially inhomogeneous spherically anisotropic elastic materials in the Stroh formalism

    Full text link
    A method is presented for solving elastodynamic problems in radially inhomogeneous elastic materials with spherical anisotropy, i.e.\ materials such that cijkl=cijkl(r)c_{ijkl}= c_{ijkl}(r) in a spherical coordinate system r,Ξ,ϕ{r,\theta,\phi}. The time harmonic displacement field u(r,Ξ,ϕ)\mathbf{u}(r,\theta ,\phi) is expanded in a separation of variables form with dependence on Ξ,ϕ\theta,\phi described by vector spherical harmonics with rr-dependent amplitudes. It is proved that such separation of variables solution is generally possible only if the spherical anisotropy is restricted to transverse isotropy with the principal axis in the radial direction, in which case the amplitudes are determined by a first-order ordinary differential system. Restricted forms of the displacement field, such as u(r,Ξ)\mathbf{u}(r,\theta), admit this type of separation of variables solutions for certain lower material symmetries. These results extend the Stroh formalism of elastodynamics in rectangular and cylindrical systems to spherical coordinates.Comment: 15 page

    Post-AGB Stars in Globular Clusters and Galactic Halos

    Get PDF
    We discuss three aspects of post-AGB (PAGB) stars in old populations. (1) HST photometry of the nucleus of the planetary nebula (PN) K 648 in the globular cluster (GC) M15 implies a mass of 0.60 Msun, in contrast to the mean masses of white dwarfs in GCs of ~0.5 Msun. This suggests that K 648 is descended from a merged binary, and we infer that single Pop II stars do not produce visible PNe. (2) Yellow PAGB stars are the visually brightest stars in old populations (Mv ~ -3.3) and are easily recognizable because of their large Balmer jumps; thus they show great promise as a Pop II standard candle. Two yellow PAGB stars in the GC NGC 5986 have the same V magnitudes to within +/-0.05 mag, supporting an expected narrow luminosity function. (3) Using CCD photometry and a u filter lying below the Balmer jump, we have detected yellow PAGB stars in the halo of M31 and in its dwarf elliptical companion NGC 205. With the Milky Way zero point, we reproduce the Cepheid distance to M31, and find that NGC 205 is ~100 kpc further away than M31. The star counts imply a yellow PAGB lifetime of about 25,000 yr, and their luminosities imply masses near 0.53 Msun.Comment: 6 pages, 2 figures. To appear in proceedings of Torun, Poland, workshop on "Post-AGB Objects (Proto-Planetary Nebulae) as a Phase of Stellar Evolution," ed. S.K. Gorn

    Byzantine Gathering in Networks

    Full text link
    This paper investigates an open problem introduced in [14]. Two or more mobile agents start from different nodes of a network and have to accomplish the task of gathering which consists in getting all together at the same node at the same time. An adversary chooses the initial nodes of the agents and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label but does not know the labels of the other agents or their positions relative to its own. Agents move in synchronous rounds and can communicate with each other only when located at the same node. Up to f of the agents are Byzantine. A Byzantine agent can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. What is the minimum number M of good agents that guarantees deterministic gathering of all of them, with termination? We provide exact answers to this open problem by considering the case when the agents initially know the size of the network and the case when they do not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2. More precisely, for networks of known size, we design a deterministic algorithm gathering all good agents in any network provided that the number of good agents is at least f+1. For networks of unknown size, we also design a deterministic algorithm ensuring the gathering of all good agents in any network but provided that the number of good agents is at least f+2. Both of our algorithms are optimal in terms of required number of good agents, as each of them perfectly matches the respective lower bound on M shown in [14], which is of f+1 when the size of the network is known and of f+2 when it is unknown

    Cranial remains of Ramsayia magna from the Late Pleistocene of Australia and the evolution of gigantism in wombats (Marsupialia, Vombatidae)

    Get PDF
    Giant wombats (defined here as ≄70 kg) are found in the genera Phascolonus, Ramsayia and perhaps Sedophascolomys. Ramsayia is currently the most poorly known, having been described from mandibular and cranial fragments. Here, we report the most complete cranial remains attributable to the genus, identified as R. magna. The specimen provides new insights into the anatomy of the species and evolutionary adaptations to gigantism in Vombatidae. We record parietal sinuses in a vombatid for the first time, an adaptation to increased skull size relative to the braincase. The presence of a prominent premaxillary spine may indicate that the species possessed a large, fleshy nose. Both features are convergent on other large‐bodied, non‐vombatid extinct megaherbivores of Australia such as Diprotodon optatum. We use the cranial remains to examine the phylogenetic relationships of giant wombats to other vombatids. Phylogenetic analysis using maximum parsimony and Bayesian inference indicates that Phascolomys, Ramsayia and Sedophascolomys form a clade, suggesting a single origin of gigantism within Vombatidae. This origin may be related to the exploitation of poor‐quality foods, and preceded extreme specializations observed in the cranial anatomy of the giant wombats. U‐series and combined U‐series and electron spin resonance (ESR) dating methods were applied to one fossil tooth. Age calculations systematically correlate the fossil remains to Marine Isotope Stage 5, and an age of c. 80 000 years can be proposed for this specimen. With only a single well‐dated occurrence for this taxon, it is currently impossible to determine when and why R. magna became extinct

    Phase separation transition in liquids and polymers induced by electric field gradients

    Full text link
    Spatially uniform electric fields have been used to induce instabilities in liquids and polymers, and to orient and deform ordered phases of block-copolymers. Here we discuss the demixing phase transition occurring in liquid mixtures when they are subject to spatially nonuniform fields. Above the critical value of potential, a phase-separation transition occurs, and two coexisting phases appear separated by a sharp interface. Analytical and numerical composition profiles are given, and the interface location as a function of charge or voltage is found. The possible influence of demixing on the stability of suspensions and on inter-colloid interaction is discussed.Comment: 7 pages, 3 figures. Special issue of the J. Phys. Soc. Ja

    A mathematical model of a criminal-prone society

    Full text link
    Criminals are common to all societies. To fight against them the community takes different security measures as, for example, to bring about a police. Thus, crime causes a depletion of the common wealth not only by criminal acts but also because the cost of hiring a police force. In this paper, we present a mathematical model of a criminal-prone self-protected society that is divided into socio-economical classes. We study the effect of a non-null crime rate on a free-of-criminals society which is taken as a reference system. As a consequence, we define a criminal-prone society as one whose free-of-criminals steady state is unstable under small perturbations of a certain socio-economical context. Finally, we compare two alternative strategies to control crime: (i) enhancing police efficiency, either by enlarging its size or by updating its technology, against (ii) either reducing criminal appealing or promoting social classes at ris

    Action research and democracy

    Get PDF
    This contribution explores the relationship between research and learning democracy. Action research is seen as being compatible with the orientation of educational and social work research towards social justice and democracy. Nevertheless, the history of action research is characterized by a tension between democracy and social engineering. In the social-engineering approach, action research is conceptualized as a process of innovation aimed at a specific Bildungsideal. In a democratic approach action research is seen as research based on cooperation between research and practice. However, the notion of democratic action research as opposed to social engineering action research needs to be theorized. So called democratic action research involving the implementation by the researcher of democracy as a model and as a preset goal, reduces cooperation and participation into instruments to reach this goal, and becomes a type of social engineering in itself. We argue that the relationship between action research and democracy is in the acknowledgment of the political dimension of participation: ‘a democratic relationship in which both sides exercise power and shared control over decision-making as well as interpretation’. This implies an open research design and methodology able to understand democracy as a learning process and an ongoing experiment
    • 

    corecore