26 research outputs found
Trib2 suppresses tumor initiation in Notch-driven T-ALL
Trib2 is highly expressed in human T cell acute lymphoblastic leukemia (T-ALL) and is a direct transcriptional target of the oncogenic drivers Notch and TAL1. In human TAL1-driven T-ALL cell lines, Trib2 is proposed to function as an important survival factor, but there is limited information about the role of Trib2 in primary T-ALL. In this study, we investigated the role of Trib2 in the initiation and maintenance of Notch-dependent T-ALL. Trib2 had no effect on the growth and survival of murine T-ALL cell lines in vitro when expression was blocked by shRNAs. To test the function of Trib2 on leukemogenesis in vivo, we generated Trib2 knockout mice. Mice were born at the expected Mendelian frequencies without gross developmental anomalies. Adult mice did not develop pathology or shortened survival, and hematopoiesis, including T cell development, was unperturbed. Using a retroviral model of Notch-induced T-ALL, deletion of Trib2 unexpectedly decreased the latency and increased the penetrance of T-ALL development in vivo. Immunoblotting of primary murine T-ALL cells showed that the absence of Trib2 increased C/EBPα expression, a known regulator of cell proliferation, and did not alter AKT or ERK phosphorylation. Although Trib2 was suggested to be highly expressed in T-ALL, transcriptomic analysis of two independent T-ALL cohorts showed that low Trib2 expression correlated with the TLX1-expressing cortical mature T-ALL subtype, whereas high Trib2 expression correlated with the LYL1-expressing early immature T-ALL subtype. These data indicate that Trib2 has a complex role in the pathogenesis of Notch-driven T-ALL, which may vary between different T-ALL subtypes
Tribbles homolog 2 inactivates C/EBPα and causes acute myelogenous leukemia
SummaryTribbles homolog 2 (Trib2) was identified as a downregulated transcript in leukemic cells undergoing growth arrest. To investigate the effects of Trib2 in hematopoietic progenitors, mice were reconstituted with hematopoietic stem cells retrovirally expressing Trib2. Trib2-transduced bone marrow cells exhibited a growth advantage ex vivo and readily established factor-dependent cell lines. In vivo, Trib2-reconstituted mice uniformly developed fatal transplantable acute myelogenous leukemia (AML). In mechanistic studies, we found that Trib2 associated with and inhibited C/EBPα. Furthermore, Trib2 expression was elevated in a subset of human AML patient samples. Together, our data identify Trib2 as an oncogene that induces AML through a mechanism involving inactivation of C/EBPα
Notch dimerization is required for leukemogenesis and T-cell development
Notch signaling regulates myriad cellular functions by activating transcription, yet how Notch selectively activates different transcriptional targets is poorly understood. The core Notch transcriptional activation complex can bind DNA as a monomer, but it can also dimerize on DNA-binding sites that are properly oriented and spaced. However, the significance of Notch dimerization is unknown. Here, we show that dimeric Notch transcriptional complexes are required for T-cell maturation and leukemic transformation but are dispensable for T-cell fate specification from a multipotential precursor. The varying requirements for Notch dimerization result from the differential sensitivity of specific Notch target genes. In particular, c-Myc and pre-T-cell antigen receptor α (Ptcra) are dimerization-dependent targets, whereas Hey1 and CD25 are not. These findings identify functionally important differences in the responsiveness among Notch target genes attributable to the formation of higher-order complexes. Consequently, it may be possible to develop a new class of Notch inhibitors that selectively block outcomes that depend on Notch dimerization (e.g., leukemogenesis)
The neuronal alpha(6) subunit forms functional heteromeric acetylcholine receptors in human transfected cells
We examine some of the biological and physiological properties of the avian alpha6 neuronal nicotinic acetylcholine receptor (nAChR) subunit. We show here that, beginning at embryonic day 5, alpha6 mRNA is abundantly expressed in the developing chick neuroretina, where it coexists with other nicotinic receptor subunit mRNAs such as alpha3, beta2 and beta4. In contrast, alpha6 mRNA is absent from the optic tectum and from the peripheral ganglia. Despite numerous efforts, the alpha6 subunit has long failed the critical test of functional reconstitution. Here we use patch-clamp techniques and confocal laser microscopy to measure ACh-activated currents and nicotine-elicited Ca2+ transients in human BOSC 23 cells transfected with chick alpha6 in combination with other chick nAChR neuronal subunits. Heterologously expressed alpha6 and beta4 subunits form functional heteromeric nAChRs, which are permeable to Ca2+ ions and blocked by the nicotinic antagonist methyllycaconitine (10 microM). Likewise, ACh elicits measurable currents in cells transfected with alpha6 and beta2. Hill analysis of the dose-response curves in cells transfected with alpha3, beta4 and alpha6 cDNAs, suggests the assembly of functional alpha3beta4alpha6 receptor, with an apparent affinity for ACh threefold lower than alpha3beta4. Our results indicate that alpha6-containing nAChRs assemble in heterologous expression systems and are probably present in retinal cells