45 research outputs found
Perceptual Regions of South Dakota
The state of South Dakota has been divided into many different regions. Some of these regions are the result of formal classification by professionals such as geographers, geologists and pedologists, whereas others reflect the informal opinion of a layman or nonprofessional. Some distinctions exist, perhaps, for convenience, whereas others express a sense of pride and belonging in community or territory. Regardless of the motivation, the resulting perceptual regions are abstractions of space that illustrate how the residents of South Dakota interpret their environment. This paper is a cultural study. The objective of this study is to determine whether South Dakota residents perceive distinct regions within their state. Thus, the following hypothesis was investigated: Specific perceptual regions are recognized by the residents of South Dakota
Nuclear-localized human respiratory syncytial virus NS1 protein modulates host gene transcription
Human respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections in the pediatric, elderly, and immunocompromised individuals. RSV non-structural protein NS1 is a known cytosolic immune antagonist, but how NS1 modulates host responses remains poorly defined. Here, we observe NS1 partitioning into the nucleus of RSV-infected cells, including the human airway epithelium. Nuclear NS1 coimmunoprecipitates with Mediator complex and is chromatin associated. Chromatin-immunoprecipitation demonstrates enrichment of NS1 that overlaps Mediator and transcription factor binding within the promoters and enhancers of differentially expressed genes during RSV infection. Mutation of the NS1 C-terminal helix reduces NS1 impact on host gene expression. These data suggest that nuclear NS1 alters host responses to RSV infection by binding at regulatory elements of immune response genes and modulating host gene transcription. Our study identifies another layer of regulation by virally encoded proteins that shapes host response and impacts immunity to RSV
ESTs, cDNA microarrays, and gene expression profiling : tools for dissecting plant physiology and development
Gene expression profiling holds tremendous promise for dissecting the regulatory mechanisms and transcriptional networks that underlie biological processes. Here we provide details of approaches used by others and ourselves for gene expression profiling in plants with emphasis on cDNA microarrays and discussion of both experimental design and downstream analysis. We focus on methods and techniques emphasizing fabrication of cDNA microarrays, fluorescent labeling, cDNA hybridization, experimental design, and data processing. We include specific examples that demonstrate how this technology can be used to further our understanding of plant physiology and development (specifically fruit development and ripening) and for comparative genomics by comparing transcriptome activity in tomato and pepper fruit
Communication Biophysics
Contains reports on six research projects.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 RO1 NS18682)National Institutes of Health (Grant 5 RO1 NS20322)National Institutes of Health (Grant 5 R01 NS20269)National Institutes of Health (Grant 5 T32NS 07047)Symbion, Inc.National Science Foundation (Grant BNS 83-19874)National Science Foundation (Grant BNS 83-19887)National Institutes of Health (Grant 6 RO1 NS 12846)National Institutes of Health (Grant 1 RO1 NS 21322
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on twelve research projects.National Institutes of Health Grant R01 DC00117National Institutes of Health Grant R01 DC02032National Institutes of Health/National Institute of Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research Grant N61339-96-K-0002U.S. Navy - Office of Naval Research Grant N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-97-1-0635U.S. Navy - Office of Naval Research Grant N00014-97-1-0655U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202National Institutes of Health Grant RO1 NS33778Massachusetts General Hospital, Center for Innovative Minimally Invasive Therapy Research Fellowship Gran
BioSimulators: a central registry of simulation engines and services for recommending specific tools
Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations
Another Shipment of Six Short-Period Giant Planets from TESS
We present the discovery and characterization of six short-period, transiting
giant planets from NASA's Transiting Exoplanet Survey Satellite (TESS) --
TOI-1811 (TIC 376524552), TOI-2025 (TIC 394050135), TOI-2145 (TIC 88992642),
TOI-2152 (TIC 395393265), TOI-2154 (TIC 428787891), & TOI-2497 (TIC 97568467).
All six planets orbit bright host stars (8.9 <G< 11.8, 7.7 <K< 10.1). Using a
combination of time-series photometric and spectroscopic follow-up observations
from the TESS Follow-up Observing Program (TFOP) Working Group, we have
determined that the planets are Jovian-sized (R = 1.00-1.45 R),
have masses ranging from 0.92 to 5.35 M, and orbit F, G, and K stars
(4753 T 7360 K). We detect a significant orbital eccentricity
for the three longest-period systems in our sample: TOI-2025 b (P = 8.872 days,
= ), TOI-2145 b (P = 10.261 days, =
), and TOI-2497 b (P = 10.656 days, =
). TOI-2145 b and TOI-2497 b both orbit subgiant host
stars (3.8 g 4.0), but these planets show no sign of inflation
despite very high levels of irradiation. The lack of inflation may be explained
by the high mass of the planets; M (TOI-2145
b) and M (TOI-2497 b). These six new discoveries
contribute to the larger community effort to use {\it TESS} to create a
magnitude-complete, self-consistent sample of giant planets with
well-determined parameters for future detailed studies.Comment: 20 Pages, 6 Figures, 8 Tables, Accepted by MNRA
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184
Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals
We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead