1,942 research outputs found
Dilemmas in doing insider research in professional education
This article explores the dilemmas I encountered when researching social work education in England as an insider researcher who was simultaneously employed as an educator in the host institution. This was an ethnographic project deploying multiple methods and generating rich case study material which informed the student textbook Becoming a Social Worker the four-year period of the project. First, ethical dilemmas emerged around informed consent and confidentiality when conducting surveys of students and reading their portfolios. Second, professional dilemmas stemmed from the ways in which my roles as a researcher, academic tutor, social worker and former practice educator converged and collided. Third, political dilemmas pertained to the potential for the project to crystallize and convey conflicts among stakeholders in the university and community. Since the majority of research in social work education is conducted by insiders, we have a vital interest in making sense of such complexity
A porous circulation model of the human brain for in silico clinical trials in ischaemic stroke
The advancement of ischaemic stroke treatment relies on resource-intensive experiments and clinical trials. In order to improve ischaemic stroke treatments, such as thrombolysis and thrombectomy, we target the development of computational tools for in silico trials which can partially replace these animal and human experiments with fast simulations. This study proposes a model that will serve as part of a predictive unit within an in silico clinical trial estimating patient outcome as a function of treatment. In particular, the present work aims at the development and evaluation of an organ-scale microcirculation model of the human brain for perfusion prediction. The model relies on a three-compartment porous continuum approach. Firstly, a fast and robust method is established to compute the anisotropic permeability tensors representing arterioles and venules. Secondly, vessel encoded arterial spin labelling magnetic resonance imaging and clustering are employed to create an anatomically accurate mapping between the microcirculation and large arteries by identifying superficial perfusion territories. Thirdly, the parameter space of the problem is reduced by analysing the governing equations and experimental data. Fourthly, a parameter optimization is conducted. Finally, simulations are performed with the tuned model to obtain perfusion maps corresponding to an open and an occluded (ischaemic stroke) scenario. The perfusion map in the occluded vessel scenario shows promising qualitative agreement with computed tomography images of a patient with ischaemic stroke caused by large vessel occlusion. The results highlight that in the case of vessel occlusion (i) identifying perfusion territories is essential to capture the location and extent of underperfused regions and (ii) anisotropic permeability tensors are required to give quantitatively realistic estimation of perfusion change. In the future, the model will be thoroughly validated against experiments
On the sensitivity analysis of porous finite element models for cerebral perfusion estimation
AbstractComputational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter.The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification.The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions.</jats:p
Recommended from our members
Users’ experiences of lighting controls: a case-study
The aim of this paper is to elucidate how occupants perceive their lit environments in a university setting and how they interact with lighting controls using qualitative methods. Semi-structured interviews were carried out with academic teaching and research staff. Thematic analysis identified four main themes: control and choice, connection with the outdoors, concentration, and comfort. Participants were largely able to control and adapt their lighting using small power lighting in office spaces and they perceived this as beneficial to comfort and concentration. Participants expressed frustration with the light switches in classrooms, a lack of consistency in lighting controls across the university buildings was particularly notable. Installers should consider how piecemeal upgrades on large estates affect the perception of buildings where occupiers face multiple control systems. The management of the lighting in classroom spaces including the type and location of blinds, lack of regular window cleaning in some buildings and difficulty in minimising light on projection screens in upgraded classrooms were cited as areas for improvement. Wider implications for lighting control and management highlighted by this study include most notably that a lack of end users consultation has serious consequences on their perception of lighting upgrades and their willingness to employ “workarounds”
A framework for Operational Security Metrics Development for industrial control environment
Security metrics are very crucial towards providing insights when measuring security states and susceptibilities in industrial operational environments. Obtaining practical security metrics depend on effective security metrics development approaches. To be effective, a security metrics development framework should be scope-definitive, objective-oriented, reliable, simple, adaptable, and repeatable (SORSAR). A framework for Operational Security Metrics Development (OSMD) for industry control environments is presented, which combines concepts and characteristics from existing approaches. It also adds the new characteristic of adaptability. The OSMD framework is broken down into three phases of: target definition, objective definition, and metrics synthesis. A case study scenario is used to demonstrate an instance of how to implement and apply the proposed framework to demonstrate its usability and workability. Expert elicitation has also be used to consolidate the validity of the proposed framework. Both validation approaches have helped to show that the proposed framework can help create effective and efficient ICS-centric security metrics taxonomy that can be used to evaluate capabilities or vulnerabilities. The understanding from this can help enhance security assurance within industrial operational environments
Mycobacterium tuberculosis Responds to Chloride and pH as Synergistic Cues to the Immune Status of its Host Cell
PubMed ID: 23592993This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Recommended from our members
Equal fitness paradigm explained by a trade-off between generation time and energy production rate
Most plant, animal and microbial species of widely varying body size and lifestyle are nearly equally fit as evidenced by their coexistence and persistence through millions of years. All organisms compete for a limited supply of organic chemical energy, derived mostly from photosynthesis, to invest in the two components of fitness: survival and production. All organisms are mortal because molecular and cellular damage accumulates over the lifetime; life persists only because parents produce offspring. We call this the equal fitness paradigm. The equal fitness paradigm occurs because: (1) there is a trade-off between generation time and productive power, which have equal-but-opposite scalings with body size and temperature; smaller and warmer organisms have shorter lifespans but produce biomass at higher rates than larger and colder organisms; (2) the energy content of biomass is essentially constant, ~22.4 kJ g−1 dry body weight; and (3) the fraction of biomass production incorporated into surviving offspring is also roughly constant, ~10–50%. As organisms transmit approximately the same quantity of energy per gram to offspring in the next generation, no species has an inherent lasting advantage in the struggle for existence. The equal fitness paradigm emphasizes the central importance of energy, biological scaling relations and power–time trade-offs in life history, ecology and evolution
Recommended from our members
Cross-resistance between myclobutanil and tebuconazole and the genetic basis of tebuconazole resistance in Venturia inaequalis
BACKGROUND: Myclobutanil is one of the most widely used demethylation inhibitor (DMI) fungicides for the management of apple scab, caused by Venturia inaequalis. Strains of V. inaequalis resistant to myclobutanil have been reported across the world. Tebuconazole, another DMI fungicide, has been proposed as an alternative to myclobutanil, and the extent of cross-resistance with myclobutanil therefore needs to be evaluated. The sensitivity to tebuconazole and myclobutanil of a total of 40 isolates was determined. Half the isolates came from an isolated orchard which had never been sprayed with fungicides and half from orchards sprayed regularly with myclobutanil, but still with disease control problems. The progeny of a tebuconazole resistant (R) × sensitive (S) V. inaequalis cross were analysed in order to improve understanding of the genetic control of tebuconazole sensitivity.
RESULTS: There is cross-resistance between myclobutanil and tebuconazole (r=0.91; P < 0.001). Sensitivity to tebuconazole of the progeny of a R×S cross varied quantitatively in a pattern which implied at least two gene loci differing between the parental strains. In addition, the asymmetric distribution of the sensitivity in the progeny implied possible epistatic effects.
CONCLUSION: Resistance to myclobutanil and tebuconazole is strongly correlated. At least two genes are involved in the control of tebuconazole resistance in V. inaequalis
Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work
Percussion hemoglobinuria - a novel term for hand trauma-induced mechanical hemolysis: a case report
<p>Abstract</p> <p>Introduction</p> <p>Extracorpuscular hemolysis caused by mechanical trauma has been well described in relation to lower extremity use, such as in soldiers and runners. Terms such as "march hemoglobinuria", "foot strike hemolysis" and "runners hemoglobinuria" have previously been coined and are easily recalled. Newer cases, however, are being identified in individuals vigorously using their upper extremities, such as drum players who use their hands to strike the instrument. Given the increased recognition of upper extremity-related mechanical hemolysis and hemoglobinuria in drummers, and the use of hand drumming worldwide, we would like introduce a novel term for this condition and call it "percussion hemoglobinuria".</p> <p>Case presentation</p> <p>A 24-year-old Caucasian man presented with reddish brown discoloration of his urine after playing the djembe drum. Urine examination after a rigorous practice session revealed blood on the dipstick, and 0 to 2 red blood cells per high power field microscopically. The urine sample was negative for myoglobulin. Other causes of hemolysis and hematuria were excluded and cessation of drum playing resulted in resolution of his symptoms.</p> <p>Conclusions</p> <p>The association of mechanical trauma-induced hemoglobinuria and playing hand percussion instruments is increasingly being recognized. We, however, feel that the true prevalence is higher than what has been previously recorded in the literature. By coining the term "percussion hemoglobinuria" we hope to raise the awareness of screening for upper extremity trauma-induced mechanical hemolysis in the evaluation of a patient with hemoglobinuria.</p
- …