99 research outputs found

    Serotonin and motherhood: From molecules to mood

    Get PDF
    Emerging research points to a valuable role of the monoamine neurotransmitter, serotonin, in the display of maternal behaviors and reproduction-associated plasticity in the maternal brain. Serotonin is also implicated in the pathophysiology of numerous affective disorders and likely plays an important role in the pathophysiology of maternal mental illness. Therefore, the main goals of this review are to detail: 1) how the serotonin system of the female brain changes across pregnancy and postpartum; 2) the role of the central serotonergic system in maternal caregiving and maternal aggression; and 3) how the serotonin system and selective serotonin reuptake inhibitor medications (SSRIs) are involved in the treatment of maternal mental illness. Although there is much work to be done, studying the central serotonin system’s multifaceted role in the maternal brain is vital to our understanding of the processes governing matrescence and the maintenance of motherhood

    Perinatal fluoxetine increases hippocampal neurogenesis and reverses the lasting effects of pre-gestational stress on serum corticosterone, but not on maternal behavior, in the rat dam

    Full text link
    There is increasing evidence that mental health concerns, stress-related mental illnesses, and parental stress prior to conception have long-term effects on offspring outcomes. However, more work is needed to understand how pre-gestational stress might affect neurobehavioral outcomes in the mother. We investigated how chronic stress prior to gestation affects maternal behavior and related physiology, and aimed to determine the role that perinatal SSRIs have in altering these stress effects. To do this, female Sprague-Dawley rats were subject to chronic unpredictable stress (CUS) prior to breeding. During the perinatal period they were administered fluoxetine (10 mg/kg/day). Four groups of dams were studied: Control + Vehicle, Pre-gestational Stress + Vehicle, Control + Fluoxetine and Pre-gestational Stress + Fluoxetine. Maternal weight, breeding success, and maternal caregiving behaviors were recorded. Measures of serum corticosterone and corticosteroid-binging globulin (CBG) and the number of immature neurons in the dorsal hippocampus were also assessed in the late postpartum. Main findings show pre-gestational stress resulted in poor reproductive success and maintenance of pregnancy. Pre-gestationally stressed dams also showed higher levels of nursing and fewer bouts of licking/grooming offspring in the first week postpartum – behaviors that were not reversed by perinatal fluoxetine treatment. In the dam, perinatal fluoxetine treatment reversed the effect of pre-gestational maternal stress on serum corticosterone levels and increased serum CBG levels as well as neurogenesis in the dorsal hippocampus. Maternal corticosterone levels significantly correlated with blanket and passive nursing. This work provides evidence for a long-term impact of stress prior to gestation in the mother, and shows that perinatal SSRI medications can prevent some of these effects. © 2017 Elsevier B.V

    Developmental Fluoxetine Exposure Normalizes the Long-Term Effects of Maternal Stress on Post-Operative Pain in Sprague-Dawley Rat Offspring

    Get PDF
    Early life events can significantly alter the development of the nociceptive circuit. In fact, clinical work has shown that maternal adversity, in the form of depression, and concomitant selective serotonin reuptake inhibitor (SSRI) treatment influence nociception in infants. The combined effects of maternal adversity and SSRI exposure on offspring nociception may be due to their effects on the developing hypothalamic-pituitary-adrenal (HPA) system. Therefore, the present study investigated long-term effects of maternal adversity and/or SSRI medication use on nociception of adult Sprague-Dawley rat offspring, taking into account involvement of the HPA system. Dams were subject to stress during gestation and were treated with fluoxetine (2×/5 mg/kg/day) prior to parturition and throughout lactation. Four groups of adult male offspring were used: 1. Control+Vehicle, 2. Control+Fluoxetine, 3. Prenatal Stress+Vehicle, 4. Prenatal Stress+Fluoxetine. Results show that post-operative pain, measured as hypersensitivity to mechanical stimuli after hind paw incision, was decreased in adult offspring subject to prenatal stress alone and increased in offspring developmentally exposed to fluoxetine alone. Moreover, post-operative pain was normalized in prenatally stressed offspring exposed to fluoxetine. This was paralleled by a decrease in corticosteroid binding globulin (CBG) levels in prenatally stressed offspring and a normalization of serum CBG levels in prenatally stressed offspring developmentally exposed to fluoxetine. Thus, developmental fluoxetine exposure normalizes the long-term effects of maternal adversity on post-operative pain in offspring and these effects may be due, in part, to the involvement of the HPA system

    Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

    Get PDF
    Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity

    Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 μg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation

    The Power of an Infant\u27s Smile: Maternal Physiological Responses to Infant Emotional Expressions

    Get PDF
    Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants\u27 emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants\u27 affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned): a happy smiling face (smile condition) or a calm neutral face (neutral condition). Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant\u27s positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems

    Perinatal Selective Serotonin Reuptake Inhibitor Exposure: Impact on Brain Development and Neural Plasticity

    No full text
    Selective serotonin reuptake inhibitor (SSRI) medications are the most common antidepressant treatment used during pregnancy and the postpartum period. Up to 10% of pregnant women are prescribed SSRIs. Serotonin plays an integral part in neurodevelopment, and questions have been raised about the placental transfer of SSRIs and the effects of preventing reuptake of presynaptic serotonin on fetal neurodevelopment. Preclinical data is beginning to document a role of early exposure to SSRIs in long-term developmental outcomes related to a number of brain regions, such as the hippocampus, cortex and cerebellum. To date, the majority of preclinical work has investigated the developmental effects of SSRIs in the offspring of healthy mothers; however, more research is needed on the effects of these medications in the face of maternal adversity. This minireview will highlight emerging evidence from clinical and preclinical studies investigating the impact of perinatal SSRI exposure on brain development and neural plasticity

    The Neurobiology of Maternal Mental Illness Current understanding and future directions

    No full text
    International audienc

    Memory and Motherhood: Is It Better Than What We Think?

    No full text
    International audienc

    Perinatal SSRI medications and offspring hippocampal plasticity interaction with maternal stress and sex

    No full text
    International audienceThere is growing use of selective serotonin reuptake inhibitor antidepressant (SSRI) medications during the perinatal period to treat maternal affective disorders. Perinatal SSRI exposure can have a long-term impact on offspring neuroplasticity and behavioral development that remains to be fully elucidated. This mini-review will summarize what is known about the effects of perinatal SSRIs on plasticity in the developing hippocampus, taking into account the role that maternal stress and depression may have. Emerging clinical findings and research in animal models will be discussed. In addition, sexually differentiated effects will be highlighted, as recent work shows that male offspring are often more sensitive to the effects of maternal stress, whereas female offspring can be more sensitive to perinatal SSRIs. Potential mechanisms behind these changes and aims for future research will also be discussed. Understanding the impact of perinatal SSRIs on neuroplasticity will provide better insight into the long-term effects of such medications on the health and well-being of both mother and child and may improve therapeutic approaches for maternal mood disorders during the perinatal period
    corecore