4 research outputs found

    Dynamical evolution of basaltic asteroids outside the Vesta family in the inner main belt

    Full text link
    Basaltic V-type asteroids are leftovers from the formation and evolution of differentiated planetesimals. They are thought to originate from mantles and crusts of multiple different parent bodies. Identifying the links between individual V-type asteroids and multiple planetesimals is challenging, especially in the inner part of the main asteroid belt, where the majority of V-type asteroids are expected to have originated from a single planetesimal, namely, (4) Vesta. In this work, we aim to trace the origin of a number of individual V-type asteroids from the inner part of the main asteroid belt. The main goal is to identify asteroids that may not be traced back to (4) Vesta and may therefore originate from other differentiated planetesimals. We performed a 2 Gy backward numerical integration of the orbits of the selected V-type asteroids. For each asteroid, we used 1001 clones to map the effect of orbital uncertainties. In the integration, we use information on physical properties of the considered V-type asteroids such as pole orientation, rotational period, and thermal parameters. The majority of V-types in the inner main belt outside the Vesta family are clearly Vesta fugitives. Two objects, namely, (3307) Athabasca and (17028) 1999 FJ5_{5}, show no clear dynamical link to (4) Vesta. Together with (809) Lundia (from our previous work), these objects could represent the parent bodies of anomalous HED meteorites such as the Banbura Rockhole. Furthermore, some objects of the low-inclination population cannot be traced back to (4) Vesta within the 2 Gy integration

    Physical and dynamical properties of the unusual V-type asteroid (2579) Spartacus

    Get PDF
    Context. Asteroid (2579) Spartacus is a small V-type object located in the inner main belt. This object shows spectral characteristics unusual for typical Vestoids, which may indicate an origin deeper than average within Vesta or an origin from an altogether different parent body. Aims. Our main goal is to study the origin of Spartacus. We derive the spin of Spartacus and a convex shape model of Spartacus in order to increase the knowledge of the body's physical properties. The rotational parameters are then used to investigate dynamical evolution of the object as well as to distinguish regions sampled by spectral observations to determine whether its surface displays heterogeneity. Methods. We collected lightcurves available from the literature (oppositions of 2009, 2012) and obtained additional photometric observations at various telescopes in 2016, 2017, and 2018. We used the lightcurve inversion method to derive a spin and convex shape model. We have collected spectral observations over two rotational periods of Spartacus and determined its spectral parameters using the modified Gaussian model (MGM). We then dynamically integrated the orbital elements of Spartacus, taking into account existing information, including its thermal properties, size and the derived spin axis orientation. Results. We find two models for (2579) Spartacus: (a) lambda = 312 degrees +/- 5 degrees, beta = -57 degrees +/- 5 degrees and (b) lambda = 113 degrees +/- 5 degrees, beta = -60 degrees +/- 5 degrees both retrograde. We find that the drift direction for Spartacus is consistent with separation from Vesta, and after a backward integration of 1 Gyr the asteroid reaches the boundary of the family. We did not observe spectral variations with rotation, thus the body most likely has a homogeneous surface. Additionally, new spectral analysis indicates that the 1.0 and 2.0 mu m band centers are within ranges that are typical for Vestoids while the area ratio of these bands is about half that of typical Vestoids. Conclusions. The asteroid (2579) Spartacus is in retrograde rotation and has a drift direction consistent with an origin from Vesta. The revised spectral band centers are within ranges typical for Vestoids, while band area ratio (BAR) is unusually low compared to that of other V-types. The dynamical model shows that the asteroid could have migrated to its current location from the edges of the Vesta family within 1 Gyr, but an origin from an earlier impact on Vesta could also be plausible.Peer reviewe

    The cosmic ray detector for the NICA collider

    No full text
    Multi-Purpose Detector (MPD) is a main part of a new Ion Collider fAcility (NICA) located in Dubna, Russia. To increase MPD functionality, it was proposed to add an additional muon trigger system for off-beam calibration of the MPD sub-detectors and for rejection of cosmic ray background during experiments. The system could also be very useful for astrophysical observations of cosmic showers initiated by high energy primary particles. This article describes the main goals of MCORD detector and the early stage of MCORD design, based on plastic scintillators with silicon photomultiplier photodetectors (SiPM) for scintillation readout and electronic system based on MicroTCA standard

    The cosmic ray detector for the NICA collider

    Get PDF
    Multi-Purpose Detector (MPD) is a main part of a new Ion Collider fAcility (NICA) located in Dubna, Russia. To increase MPD functionality, it was proposed to add an additional muon trigger system for off-beam calibration of the MPD sub-detectors and for rejection of cosmic ray background during experiments. The system could also be very useful for astrophysical observations of cosmic showers initiated by high energy primary particles. This article describes the main goals of MCORD detector and the early stage of MCORD design, based on plastic scintillators with silicon photomultiplier photodetectors (SiPM) for scintillation readout and electronic system based on MicroTCA standard
    corecore