33 research outputs found

    Complex lasso: new entangled motifs in proteins

    Get PDF
    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules

    Genus trace reveals the topological complexity and domain structure of biomolecules

    Get PDF
    The structure of bonds in biomolecules, such as base pairs in RNA chains or native interactions in proteins, can be presented in the form of a chord diagram. A given biomolecule is then characterized by the genus of an auxiliary two-dimensional surface associated to such a diagram. In this work we introduce the notion of the genus trace, which describes dependence of genus on the choice of a subchain of a given backbone chain. We find that the genus trace encodes interesting physical and biological information about a given biomolecule and its three dimensional structural complexity; in particular it gives a way to quantify how much more complicated a biomolecule is than its nested secondary structure alone would indicate. We illustrate this statement in many examples, involving both RNA and protein chains. First, we conduct a survey of all published RNA structures with better than 3 Å resolution in the PDB database, and find that the genus of natural structural RNAs has roughly linear dependence on their length. Then, we show that the genus trace captures properties of various types of base pairs in RNA, and enables the identification of the domain structure of a ribosome. Furthermore, we find that not only does the genus trace detect a domain structure, but it also predicts a cooperative folding pattern in multi-domain proteins. The genus trace turns out to be a useful and versatile tool, with many potential applications

    AlphaFold Blindness to Topological Barriers Affects Its Ability to Correctly Predict Proteins’ Topology

    No full text
    AlphaFold is a groundbreaking deep learning tool for protein structure prediction. It achieved remarkable accuracy in modeling many 3D structures while taking as the user input only the known amino acid sequence of proteins in question. Intriguingly though, in the early steps of each individual structure prediction procedure, AlphaFold does not respect topological barriers that, in real proteins, result from the reciprocal impermeability of polypeptide chains. This study aims to investigate how this failure to respect topological barriers affects AlphaFold predictions with respect to the topology of protein chains. We focus on such classes of proteins that, during their natural folding, reproducibly form the same knot type on their linear polypeptide chain, as revealed by their crystallographic analysis. We use partially artificial test constructs in which the mutual non-permeability of polypeptide chains should not permit the formation of complex composite knots during natural protein folding. We find that despite the formal impossibility that the protein folding process could produce such knots, AlphaFold predicts these proteins to form complex composite knots. Our study underscores the necessity for cautious interpretation and further validation of topological features in protein structures predicted by AlphaFold

    To Tie or Not to Tie? That Is the Question

    No full text
    In this review, we provide an overview of entangled proteins. Around 6% of protein structures deposited in the PBD are entangled, forming knots, slipknots, lassos and links. We present theoretical methods and tools that enabled discovering and classifying such structures. We discuss the advantages and disadvantages of the non-trivial topology in proteins, based on available data about folding, stability, biological properties and evolutionary conservation. We also formulate intriguing and challenging questions on the border of biophysics, bioinformatics, biology and mathematics, which arise from the discovery of an entanglement in proteins. Finally, we discuss possible applications of entangled proteins in medicine and nanotechnology, such as the chance to design super stable proteins, whose stability could be controlled by chemical potential

    Statistical Properties of Lasso-Shape Polymers and Their Implications for Complex Lasso Proteins Function

    No full text
    The shape and properties of closed loops depend on various topological factors. One of them is loop-threading, which is present in complex lasso proteins. In this work, we analyze the probability of loop-threading by the tail and its influence on the shape of the loop measured by the radius of gyration, distention, asphericity, and prolateness. In particular, we show that the probability of a trivial lasso for phantom polymer is non-zero even for an infinite structure, as well as that the threading flattens the loop by restricting its motion in one dimension. These results are further used to show that there are fewer non-trivial protein lassos than expected and select potentially functional complex lasso proteins

    The exclusive effects of chaperonin on the behavior of proteins with 52 knot.

    No full text
    The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in vitro reversibly within the structure-based model. In particular, we identify two, topologically different folding/unfolding pathways and corroborate our results with experiment, recreating the chevron plot. We show that confinement effect of chaperonin or weak crowding greatly facilitates folding, simultaneously slowing down the unfolding process of UCHs, compared with bulk conditions. Finally, we analyze the existence of knots in the denaturated state of UCHs. The results of the work show that the crowded environment of the cell should have a positive effect on the kinetics of complex knotted proteins, especially when proteins with deeper knots are found in this family
    corecore