15 research outputs found

    Passive acoustic mapping of extravasation following ultrasound-enhanced drug delivery

    No full text
    The amount and distribution of chemotherapeutic agents delivered to tumours can vary significantly due to tumour heterogeneity, even under focussed ultrasound (FUS) assisted drug delivery regimes. The ability to non-invasively localise cavitation nuclei of a similar size to therapeutic drugs, both within the vasculature and tumour tissue, may provide a useful marker of ultrasound-enhanced drug delivery and extravasation. Solid polymer based nanoscale cavitation nuclei, under FUS excitation, have previously been shown to extravasate into tissue-mimicking phantoms, and to increase drug delivery in murine tumour models in vivo. Here we show in a tissue-mimicking material that these nuclei, once extravasated under FUS excitation, are still acoustically active and can be non-invasively localised using passive acoustic mapping (PAM). By using a high resolution dual linear array setup in conjunction with adaptive beamformers, we demonstrate that the average 'maximum distance' of a PAM pixel to an extravasated particle across experiments is mm. Although the primary objective of the paper is to show that extravascular cavitation can be used as evidence of successful drug extravasation in a tissue-mimicking phantom, we also recognise the physical and computational limitations of using a high resolution dual array setup with adaptive beamformers. Thus as a secondary objective, we evaluate tradeoffs between adaptive and non-adaptive beamformers, as well as between dual and single array geometries. When compared to a conventional beamformer, adaptive beamformers reduce the maximum distance of PAM pixels to extravasated particles from an average of mm to mm in the single array case. The distance is further reduced to mm using the dual array configuration, thereby demonstrating that increasing the solid angle spanned by the PAM array aperture significantly improves drug delivery localisation. Future work will test the applicability of PAM-based monitoring of ultrasound-enhanced drug delivery in vivo

    Passive acoustic mapping using data-adaptive beamforming based on higher-order statistics

    No full text
    Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening and histotripsy. Passive Acoustic Mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the Robust Capon Beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed Robust Beamforming by Linear Programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. RLPB is found via numerical simulations to improve resolvability over TEA and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications

    Passive acoustic mapping of extravasation following ultrasoundenhanced drug delivery

    No full text
    The amount and distribution of chemotherapeutic agents delivered to tumours can vary significantly due to tumour heterogeneity, even under focussed ultrasound (FUS) assisted drug delivery regimes. The ability to non-invasively localise cavitation nuclei of a similar size to therapeutic drugs, both within the vasculature and tumour tissue, may provide a useful marker of ultrasound-enhanced drug delivery and extravasation. Solid polymer based nanoscale cavitation nuclei, under FUS excitation, have previously been shown to extravasate into tissue-mimicking phantoms, and to increase drug delivery in murine tumour models in vivo. Here we show in a tissue-mimicking material that these nuclei, once extravasated under FUS excitation, are still acoustically active and can be non-invasively localised using passive acoustic mapping (PAM). By using a high resolution dual linear array setup in conjunction with adaptive beamformers, we demonstrate that the average 'maximum distance' of a PAM pixel to an extravasated particle across experiments is mm. Although the primary objective of the paper is to show that extravascular cavitation can be used as evidence of successful drug extravasation in a tissue-mimicking phantom, we also recognise the physical and computational limitations of using a high resolution dual array setup with adaptive beamformers. Thus as a secondary objective, we evaluate tradeoffs between adaptive and non-adaptive beamformers, as well as between dual and single array geometries. When compared to a conventional beamformer, adaptive beamformers reduce the maximum distance of PAM pixels to extravasated particles from an average of mm to mm in the single array case. The distance is further reduced to mm using the dual array configuration, thereby demonstrating that increasing the solid angle spanned by the PAM array aperture significantly improves drug delivery localisation. Future work will test the applicability of PAM-based monitoring of ultrasound-enhanced drug delivery in vivo

    Passive acoustic mapping using data-adaptive beamforming based on higher-order statistics

    No full text
    Sources of nonlinear acoustic emissions, particularly those associated with cavitation activity, play a key role in the safety and efficacy of current and emerging therapeutic ultrasound applications, such as oncological drug delivery, blood-brain barrier opening and histotripsy. Passive Acoustic Mapping (PAM) is the first technique to enable real-time and non-invasive imaging of cavitation activity during therapeutic ultrasound exposure, through the recording and passive beamforming of broadband acoustic emissions using an array of ultrasound detectors. Initial limitations in PAM spatial resolution led to the adoption of optimal data-adaptive beamforming algorithms, such as the Robust Capon Beamformer (RCB), that provide improved interference suppression and calibration error mitigation compared to non-adaptive beamformers. However, such approaches are restricted by the assumption that the recorded signals have a Gaussian distribution. To overcome this limitation and further improve the source resolvability of PAM, we propose a new beamforming approach termed Robust Beamforming by Linear Programming (RLPB). Along with the variance, this optimization-based method uses higher-order-statistics of the recorded signals, making no prior assumption on the statistical distribution of the acoustic signals. RLPB is found via numerical simulations to improve resolvability over TEA and RCB. In vitro experimentation yielded improved resolvability with respect to the source-to-array distance on the order of 22% axially and 13% transversely relative to RCB, whilst successfully accounting for array calibration errors. The improved resolution and decreased dependence on accurate calibration of RLPB is expected to facilitate the clinical translation of PAM for diagnostic, including super-resolution, and therapeutic ultrasound applications

    Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles

    No full text
    Aims: Testing ultrasound-mediated cavitation for enhanced delivery of the therapeutic antibody cetuximab to tumors in a mouse model. Methods: Tumors with strong EGF receptor expression were grown bilaterally. Cetuximab was coadministered intravenously with cavitation nuclei, consisting of either the ultrasound contrast agent Sonovue or gas-stabilizing nanoscale SonoTran Particles. One of the two tumors was exposed to focused ultrasound. Passive acoustic mapping localized and monitored cavitation activity. Both tumors were then excised and cetuximab concentration was quantified. Results: Cavitation increased tumoral cetuximab concentration. When nucleated by Sonovue, a 2.1-fold increase (95% CI 1.3- to 3.4-fold) was measured, whereas SonoTran Particles gave a 3.6-fold increase (95% CI 2.3- to 5.8-fold). Conclusions: Ultrasound-mediated cavitation, especially when nucleated by nanoscale gas-entrapping particles, can noninvasively increase site-specific delivery of therapeutic antibodies to solid tumors.</p

    Dual array passive acoustic mapping for cavitation imaging with enhanced 2-D resolution

    No full text
    Passive acoustic mapping (PAM) techniques have been developed for the purposes of detecting, localizing and quantifying cavitation activity during therapeutic ultrasound procedures. Implementation with conventional diagnostic ultrasound arrays has allowed planar mapping of bubble acoustic emissions to be overlaid with B-mode anatomical images, with a variety of beamforming approaches providing enhanced resolution at the cost of extended computation times. However, no passive signal processing techniques implemented to date have overcome the fundamental physical limitation of the conventional diagnostic array aperture that results in point spread functions with axial/lateral beamwidth ratios of nearly an order of magnitude. To mitigate this problem, the use of a pair of orthogonally oriented diagnostic arrays was recently proposed, with potential benefits arising from the substantially expanded range of observation angles. This paper presents experiments and simulations intended to demonstrate the performance and limitations of the dual-array system concept. The key finding of this study is that source pair resolution of better than 1 mm is now possible in both dimensions of the imaging plane using a pair of 7.5 MHz center frequency conventional arrays at a distance of 7.6 cm. With an eye toward accelerating computations for real time applications, channel count reductions of up to a factor of eight induce negligible performance losses. Modest sensitivities to sound speed and relative array position uncertainties were identified, but if these can be kept on the order of 1% and 1 mm, respectively, then the proposed methods offer the potential for a step improvement in cavitation monitoring capability

    Security and Privacy in Smart Grid Demand Response Systems

    No full text
    Various research efforts have focussed on the security and privacy concerns arising from the introduction of smart energy meters. However, in addition to smart metering, the ultimate vision of the smart grid includes bi-directional communication between consumers and suppliers to facilitate certain types of Demand Response (DR) strategies such as demand bidding (DR-DB). In this work we explore the security and privacy implications arising from this bi-directional communication. This paper builds on the preliminary work in this field to define a set of security and privacy goals for DR systems and to identify appropriate and realistic adversary models. We use these adversary models to analyse a DR-DB system, based on the Open Automated Demand Response (OpenADR) specifications, in terms of the security and privacy goals. Our analysis shows that whilst the system can achieve the defined security goals, the current system architecture cannot achieve the privacy goals in the presence of honest-but-curious adversaries. To address this issue, we present a preliminary proposal for an enhanced architecture which includes a trusted third party based on approaches and technologies from the field of Trusted Computing
    corecore