41 research outputs found

    Information Security Audit in e-business applications

    Get PDF
    Electronic business (e-business) are different than other business because it involves any commercial or business activity that takes place by means of electronic facilities (buy and selling online), including on the Internet, proprietary networks and home banking, instead of through direct physical exchange or contact. This system creates an environment that operates at a much greater speed than traditional methods and involves much less paper–based evidence of activities. These e-business related risks should not be considered in isolation but rather as part of the overall internal control framework of an entity. It is essential to identify and assess the risks associated with an e-business environment and management should develop an e-business strategy that identifies and addresses risks. The e-business Information Systems (IS) audit is a critical component of the e-business plan. This paper tries to present a risk analysis for e-business applications in order to establish the IS audit particularities in this field.e-business, risk analysis, IS audit, confidentiality, reliability, integrity, availability

    Fast chromatin immunoprecipitation assay

    Get PDF
    Chromatin immunoprecipitation (ChIP) is a widely used method to explore in vivo interactions between proteins and DNA. The ChIP assay takes several days to complete, involves several tube transfers and uses either phenol–chlorophorm or spin columns to purify DNA. The traditional ChIP method becomes a challenge when handling multiple samples. We have developed an efficient and rapid Chelex resin-based ChIP procedure that dramatically reduces time of the assay and uses only a single tube to isolate PCR-ready DNA. This method greatly facilitates the probing of chromatin changes over many time points with several antibodies in one experiment

    The new platinum-based anticancer agent LA-12 induces retinol binding protein 4 in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The initial pharmacokinetic study of a new anticancer agent (<it>OC</it>-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum (IV) (LA-12) was complemented by proteomic screening of rat plasma. The objective of the study was to identify new LA-12 target proteins that serve as markers of LA-12 treatment, response and therapy monitoring.</p> <p>Methods</p> <p>Proteomic profiles were measured by surface-enhanced laser desorption-ionization time-of-flight mass spectrometry (SELDI-TOF MS) in 72 samples of rat plasma randomized according to LA-12 dose and time from administration. Correlation of 92 peak clusters with platinum concentration was evaluated using Spearman correlation analysis.</p> <p>Results</p> <p>We identified Retinol-binding protein 4 (RBP4) whose level correlated with LA-12 level in treated rats. Similar results were observed in randomly selected patients involved in Phase I clinical trials.</p> <p>Conclusions</p> <p>RBP4 induction is in agreement with known RBP4 regulation by amantadine and cisplatin. Since retinol metabolism is disrupted in many cancers and inversely associates with malignancy, these data identify a potential novel mechanism for the action of LA-12 and other similar anti-cancer drugs.</p

    Cell Host Response to Infection with Novel Human Coronavirus EMC Predicts Potential Antivirals and Important Differences with SARS Coronavirus

    Get PDF
    A novel human coronavirus (HCoV-EMC) was recently identified in the Middle East as the causative agent of a severe acute respiratory syndrome (SARS) resembling the illness caused by SARS coronavirus (SARS-CoV). Although derived from the CoV family, the two viruses are genetically distinct and do not use the same receptor. Here, we investigated whether HCoV-EMC and SARS-CoV induce similar or distinct host responses after infection of a human lung epithelial cell line. HCoV-EMC was able to replicate as efficiently as SARS-CoV in Calu-3 cells and similarly induced minimal transcriptomic changes before 12 h postinfection. Later in infection, HCoV-EMC induced a massive dysregulation of the host transcriptome, to a much greater extent than SARS-CoV. Both viruses induced a similar activation of pattern recognition receptors and the interleukin 17 (IL-17) pathway, but HCoV-EMC specifically down-regulated the expression of several genes within the antigen presentation pathway, including both type I and II major histocompatibility complex (MHC) genes. This could have an important impact on the ability of the host to mount an adaptive host response. A unique set of 207 genes was dysregulated early and permanently throughout infection with HCoV-EMC, and was used in a computational screen to predict potential antiviral compounds, including kinase inhibitors and glucocorticoids. Overall, HCoV-EMC and SARS-CoV elicit distinct host gene expression responses, which might impact in vivo pathogenesis and could orient therapeutic strategies against that emergent virus

    Complex Material and Surface Analysis of Anterolateral Distal Tibial Plate of 1.4441 Steel

    Get PDF
    Nickel-based austenitic stainless steels are still common for manufacture of implants intended for acute hard tissue reinforcement or stabilization, but the risk of negative reactions due to soluble nickel-rich corrosion products must be considered seriously. Corrosion processes may even be accelerated by the evolution of microstructure caused by excessive heat during machining, etc. Therefore, this study also deals with the investigation of microstructure and microhardness changes near the threaded holes of the anterolateral distal tibial plate containing approx. 14wt.% Ni by composition. There were only insignificant changes of microhardness, grain size, or microstructure orientation found close to the area of machining. In addition, wettability measurements of surface energy demonstrated only minor differences for bulk material and areas close to machining. The cyclic potentiodynamic polarization tests were performed in isotonic physiological solution. The first cycle was used for the determination of corrosion characteristics of the implant after chemical passivation, the second cycle was used to simulate real material behavior under the condition of previous surface damage by excessive pitting corrosion occurring during previous polarization. It was found that the damaged and spontaneously repassived surface showed a three-time higher standard corrosion rate than the “as received” chemically passivated surface. One may conclude that previous surface damage may decrease the lifetime of the implant significantly and increase the amount of nickel-based corrosion products distributed into surrounding tissues

    Розробка методу підвищення оперативності оцінки стану об’єкту моніторингу в інформаційних системах спеціального призначення

    Get PDF
    The peculiarities of modern military conflicts significantly increase the requirements for the efficiency of object state assessment. Therefore, it is necessary to develop algorithms (methods and techniques) that can assess the state of the monitoring object from different sources of intelligence for a limited time and with a high degree of reliability. Accurate and objective object analysis requires multi-parameter estimation with significant computational costs. That is why the following tasks were solved in the study: the formalization of the assessment of monitoring objects was carried out, a method of increasing the efficiency of assessing the condition of monitoring objects was developed and an efficiency assessment was carried out. The essence of the proposed method is the hierarchical hybridization of binary classifiers and their subsequent training. The method has the following sequence of actions: determining the degree of uncertainty, constructing a classifier tree, determining belonging to a particular class, determining object parameters, pre-processing data about the object of analysis and hierarchical traversal of the tree. The novelty of the method lies in taking into account the type of uncertainty and noise of the data and taking into account the available computing resources of the object state analysis system. The novelty of the method also lies in the use of combined training procedures (lazy training and training procedure for evolving neural networks) and selective use of system resources by connecting only the necessary types of detectors. The method allows you to build a top-level classifier using various low-level schemes for combining them and aggregating compositions. The method increases the efficiency of data processing by 12–20 % using additional advanced proceduresОсобливості сучасних воєнних конфліктів вимагають суттєво підвищують вимоги з оперативності оцінки стану об’єкту. Саме тому, необхідно проводити розробку алгоритмів (методів та методик) які здатні за обмежений час та з високим ступенем достовірності провести оцінку стану об’єкту моніторингу від різнотипних джерел розвідувальних відомостей. Точний та об’єктивний аналіз об’єкту вимагає багатопараметричної оцінки зі значними обчислювальними витратами. Саме тому в дослідженні вирішені наступні завдання, а саме: проведено формалізацію оцінки обєктів моніторингу, розроблено метод підвищення оперативності оцінювання стану обєктів моніторингу та проведено оцінку ефективності. Сутність запропонованого методу полягає в ієрархічній гібридизації бінарних класифікаторів та подальшому їх навчанні. Метод має наступну послідовність дій: визначення ступеня невизначеності, побудова дерева класифікаторів, визначення належності до певного класу, визначення параметрів об’єкту, попередня обробка даних про об’єкт аналізу та ієрархічний обхід дерева. Новизна методу полягає в врахуванні типу невизначеності та зашумленості даних та врахуванні наявних обчислювальних ресурсів системи аналізу стану об’єкту. Новизна методу також полягає у використанні комбінованих процедур навчання (ліниве навчання та процедура навчання на для штучних нейронних мереж, що еволюціонують) та вибірковим задіянням ресурсів системи за рахунок підключення тільки необхідних типів детекторів. Метод дозволяє побудувати класифікатор верхнього рівня за допомогою різних низькорівневих схем їх комбінування та агрегуючих композицій. Використання методу дозволяє досягти підвищення оперативності обробки даних на рівні 12–20&nbsp;% за рахунок використання додаткових удосконалених процеду

    Bisulfite-free analysis of 5MeC-binding proteins and locus-specific methylation density using a microparticle-based flow cytometry assay

    Get PDF
    DNA methylation analysis is emerging as a new technique with potential capabilities for early cancer detection. However, current state-of-the-art techniques are not easily translatable into routine clinical methods. Herein we describe a bead-based flow cytometry assay which combines DNA hybridization to microparticles with 5MeC-specific proteins/antibodies. These assays can be used to study the binding properties of current and emerging 5MeC-binding proteins and may also have potential in the measurement of 5MeC density in clinical samples for cancer detection

    Cytokine systems approach demonstrates differences in innate and pro-inflammatory host responses between genetically distinct MERS-CoV isolates

    Get PDF
    Abstract Background The recent emergence of a novel coronavirus in the Middle East (designated MERS-CoV) is a reminder of the zoonotic and pathogenic potential of emerging coronaviruses in humans. Clinical features of Middle East respiratory syndrome (MERS) include atypical pneumonia and progressive respiratory failure that is highly reminiscent of severe acute respiratory syndrome (SARS) caused by SARS-CoV. The host response is a key component of highly pathogenic respiratory virus infection. Here, we computationally analyzed gene expression changes in a human airway epithelial cell line infected with two genetically distinct MERS-CoV strains obtained from human patients, MERS-CoV SA 1 and MERS-CoV Eng 1. Results Using topological techniques, including persistence homology and filtered clustering, we performed a comparative transcriptional analysis of human Calu-3 cell host responses to the different MERS-CoV strains, with MERS-CoV Eng 1 inducing early kinetic changes, between 3 and 12 hours post infection, compared to MERS-CoV SA 1. Robust transcriptional changes distinguished the two MERS-CoV strains predominantly at the late time points. Combining statistical analysis of infection and cytokine-stimulated Calu-3 transcriptomics, we identified differential innate responses, including up-regulation of extracellular remodeling genes following MERS-CoV Eng 1 infection and differential pro-inflammatory responses. Conclusions Through our genomics-based approach, we found topological differences in the kinetics and magnitude of the host response to MERS-CoV SA 1 and MERS-CoV Eng 1, with differential expression of innate immune and pro-inflammatory responsive genes as a result of IFN, TNF and IL-1α signaling. Predicted activation for STAT3 mediating gene expression relevant for epithelial cell-to-cell adherens and junction signaling in MERS-CoV Eng 1 infection suggest that these transcriptional differences may be the result of amino acid differences in viral proteins known to modulate innate immunity during MERS-CoV infection
    corecore