44 research outputs found
Skin Electroporation: Effects on Transgene Expression, DNA Persistence and Local Tissue Environment
BACKGROUND: Electrical pulses have been used to enhance uptake of molecules into living cells for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination (gene delivery followed by electroporation) is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates intradermal DNA electrovaccination in detail and describes the effects on expression of the vaccine antigen, plasmid persistence and the local tissue environment. Gene profiling of the vaccination site showed that the combination of DNA and electroporation induced a significant up-regulation of pro-inflammatory genes. In vivo imaging of luciferase activity after electrovaccination demonstrated a rapid onset (minutes) and a long duration (months) of transgene expression. However, when the more immunogenic prostate specific antigen (PSA) was co-administered, PSA-specific T cells were induced and concurrently the luciferase expression became undetectable. Electroporation did not affect the long-term persistence of the PSA-expressing plasmid. CONCLUSIONS/SIGNIFICANCE: This study provides important insights to how DNA delivery by intradermal electrovaccination affects the local immunological responses of the skin, transgene expression and clearance of the plasmid. As the described vaccination approach is currently being evaluated in clinical trials, the data provided will be of high significance
Measurement of ϒ production in pp collisions at √s = 2.76 TeV
The production of Ï’(1S), Ï’(2S) and Ï’(3S)
mesons decaying into the dimuon final state is studied with
the LHCb detector using a data sample corresponding to an
integrated luminosity of 3.3 pb−1 collected in proton–proton
collisions at a centre-of-mass energy of √s = 2.76 TeV. The
differential production cross-sections times dimuon branching
fractions are measured as functions of the Ï’ transverse
momentum and rapidity, over the ranges pT < 15 GeV/c
and 2.0 < y < 4.5. The total cross-sections in this kinematic
region, assuming unpolarised production, are measured to be
σ (pp → ϒ(1S)X) × B
ϒ(1S)→μ+μ−
= 1.111 ± 0.043 ± 0.044 nb,
σ (pp → ϒ(2S)X) × B
ϒ(2S)→μ+μ−
= 0.264 ± 0.023 ± 0.011 nb,
σ (pp → ϒ(3S)X) × B
ϒ(3S)→μ+μ−
= 0.159 ± 0.020 ± 0.007 nb,
where the first uncertainty is statistical and the second systematic
Region proximity in metric spaces and its use for approximate similar search
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro , 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Computing proximity of metric regions
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro , 7 Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal
Tree signatures for XML querying and navigation
Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 , Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal