131 research outputs found

    Determination of the Carrier-Envelope Phase of Few-Cycle Laser Pulses with Terahertz-Emission Spectroscopy

    Full text link
    The availability of few-cycle optical pulses opens a window to physical phenomena occurring on the attosecond time scale. In order to take full advantage of such pulses, it is crucial to measure and stabilise their carrier-envelope (CE) phase, i.e., the phase difference between the carrier wave and the envelope function. We introduce a novel approach to determine the CE phase by down-conversion of the laser light to the terahertz (THz) frequency range via plasma generation in ambient air, an isotropic medium where optical rectification (down-conversion) in the forward direction is only possible if the inversion symmetry is broken by electrical or optical means. We show that few-cycle pulses directly produce a spatial charge asymmetry in the plasma. The asymmetry, associated with THz emission, depends on the CE phase, which allows for a determination of the phase by measurement of the amplitude and polarity of the THz pulse

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    Direct observation of the injection dynamics of a laser wakefield accelerator using few-femtosecond shadowgraphy

    Get PDF
    International audienceWe present few-femtosecond shadowgraphic snapshots taken during the non-linear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma wave period is induced by a lengthening of the first plasma period. Three dimensional particle in cell simulations support our observations

    Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures

    Get PDF
    Sharp metallic nanotapers irradiated with few-cycle laser pulses are emerging as a source of highly confined coherent electron wavepackets with attosecond duration and strong directivity. The possibility to steer, control or switch such electron wavepackets by light is expected to pave the way towards direct visualization of nanoplasmonic field dynamics and real-time probing of electron motion in solid state nanostructures. Such pulses can be generated by strong-field induced tunneling and acceleration of electrons in the near-field of sharp gold tapers within one half-cycle of the driving laser field. Here, we show the effect of the carrier-envelope phase of the laser field on the generation and motion of strong-field emitted electrons from such tips. This is a step forward towards controlling the coherent electron motion in and around metallic nanostructures on ultrashort length and time scales

    Cardioprotective effects of lixisenatide in rat myocardial ischemia-reperfusion injury studies

    Get PDF
    BACKGROUND: Lixisenatide is a glucagon-like peptide-1 analog which stimulates insulin secretion and inhibits glucagon secretion and gastric emptying. We investigated cardioprotective effects of lixisenatide in rodent models reflecting the clinical situation. METHODS: The acute cardiac effects of lixisenatide were investigated in isolated rat hearts subjected to brief ischemia and reperfusion. Effects of chronic treatment with lixisenatide on cardiac function were assessed in a modified rat heart failure model after only transient coronary occlusion followed by long-term reperfusion. Freshly isolated cardiomyocytes were used to investigate cell-type specific mechanisms of lixisenatide action. RESULTS: In the acute setting of ischemia-reperfusion, lixisenatide reduced the infarct-size/area at risk by 36% ratio without changes on coronary flow, left-ventricular pressure and heart rate. Treatment with lixisenatide for 10 weeks, starting after cardiac ischemia and reperfusion, improved left ventricular end-diastolic pressure and relaxation time and prevented lung congestion in comparison to placebo. No anti-fibrotic effect was observed. Gene expression analysis revealed a change in remodeling genes comparable to the ACE inhibitor ramipril. In isolated cardiomyocytes lixisenatide reduced apoptosis and increased fractional shortening. Glucagon-like peptide-1 receptor (GLP1R) mRNA expression could not be detected in rat heart samples or isolated cardiomyocytes. Surprisingly, cardiomyocytes isolated from GLP-1 receptor knockout mice still responded to lixisenatide. CONCLUSIONS: In rodent models, lixisenatide reduced in an acute setting infarct-size and improved cardiac function when administered long-term after ischemia-reperfusion injury. GLP-1 receptor independent mechanisms contribute to the described cardioprotective effect of lixisenatide. Based in part on these preclinical findings patients with cardiac dysfunction are currently being recruited for a randomized, double-blind, placebo-controlled, multicenter study with lixisenatide. TRIAL REGISTRATION: (ELIXA, ClinicalTrials.gov Identifier: NCT01147250

    Interactive effects of mGlu5 and 5-HT2A receptors on locomotor activity in mice

    Get PDF
    RationaleMetabotropic glutamate (mGlu) receptors have been suggested to play a role in neuropsychiatric disorders including schizophrenia, drug abuse, and depression. Because serotonergic hallucinogens increase glutamate release and mGlu receptors modulate the response to serotonin (5-HT)(2A) activation, the interactions between serotonin 5-HT(2A) receptors and mGlu receptors may prove to be important for our understanding of these diseases.ObjectiveWe tested the effects of the serotonergic hallucinogen and 5-HT(2A) agonist, 2,5-dimethoxy-4-methylamphetamine (DOM), and the selective 5-HT(2A) antagonist, M100907, on locomotor activity in the mouse behavioral pattern monitor (BPM) in mGlu5 wild-type (WT) and knockout (KO) mice on a C57 background.ResultsBoth male and female mGlu5 KO mice showed locomotor hyperactivity and diminished locomotor habituation compared with their WT counterparts. Similarly, the mGlu5-negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP) also increased locomotor hyperactivity, which was absent in mGlu5 KO mice. The locomotor hyperactivity in mGlu5 receptor KO mice was potentiated by DOM (0.5 mg/kg, subcutaneously (SC)) and attenuated by M100907 (1.0 mg/kg, SC). M100907 (0.1 mg/kg, SC) also blocked the hyperactivity induced by MPEP.ConclusionsThese studies demonstrated that loss of mGlu5 receptor activity either pharmacologically or through gene deletion leads to locomotor hyperactivity in mice. Additionally, the gene deletion of mGlu5 receptors increased the behavioral response to the 5-HT(2A) agonist DOM, suggesting that mGlu5 receptors either mitigate the behavioral effects of 5-HT(2A) hallucinogens or that mGlu5 KO mice show an increased sensitivity to 5-HT(2A) agonists. Taken together, these studies indicate a functional interaction between mGlu5 and 5-HT(2A) receptors

    Transcranial Alternating Current Stimulation Enhances Individual Alpha Activity in Human EEG

    Get PDF
    Non-invasive electrical stimulation of the human cortex by means of transcranial direct current stimulation (tDCS) has been instrumental in a number of important discoveries in the field of human cortical function and has become a well-established method for evaluating brain function in healthy human participants. Recently, transcranial alternating current stimulation (tACS) has been introduced to directly modulate the ongoing rhythmic brain activity by the application of oscillatory currents on the human scalp. Until now the efficiency of tACS in modulating rhythmic brain activity has been indicated only by inference from perceptual and behavioural consequences of electrical stimulation. No direct electrophysiological evidence of tACS has been reported. We delivered tACS over the occipital cortex of 10 healthy participants to entrain the neuronal oscillatory activity in their individual alpha frequency range and compared results with those from a separate group of participants receiving sham stimulation. The tACS but not the sham stimulation elevated the endogenous alpha power in parieto-central electrodes of the electroencephalogram. Additionally, in a network of spiking neurons, we simulated how tACS can be affected even after the end of stimulation. The results show that spike-timing-dependent plasticity (STDP) selectively modulates synapses depending on the resonance frequencies of the neural circuits that they belong to. Thus, tACS influences STDP which in turn results in aftereffects upon neural activity

    Impact of Diabetes on Postinfarction Heart Failure and Left Ventricular Remodeling

    Get PDF
    Diabetes mellitus, the metabolic syndrome, and the underlying insulin resistance are increasingly associated with diastolic dysfunction and reduced stress tolerance. The poor prognosis associated with heart failure in patients with diabetes after myocardial infarction is likely attributable to many factors, important among which is the metabolic impact from insulin resistance and hyperglycemia on the regulation of microvascular perfusion and energy generation in the cardiac myocyte. This review summarizes epidemiologic, pathophysiologic, diagnostic, and therapeutic data related to diabetes and heart failure in acute myocardial infarction and discusses novel perceptions and strategies that hold promise for the future and deserve further investigation
    • …
    corecore