19 research outputs found

    Stoichiometries of remineralisation and denitrification in global biogeochemical ocean models

    Get PDF
    Since the seminal paper of Redfield (1934), constant stoichiometric elemental ratios linking biotic carbon and nutrient fluxes are often assumed in marine biogeochemistry, and especially in coupled biogeochemical circulation models, to couple the global oxygen, carbon and nutrient cycles. However, when looking in more detail, some deviations from the classical Redfield stoichiometry have been reported, in particular with respect to remineralization of organic matter changing with depth or with ambient oxygen levels. We here compare the assumptions about the stoichiometry of organic matter and its remineralization that are used explicitly and implicitly in common biogeochemical ocean models. We find that the implicit assumptions made about the hydrogen content of organic matter can lead to inconsistencies in the modeled remineralization and denitrification stoichiometries. It is suggested that future marine biogeochemical models explicitly state the chemical composition assumed for the organic matter, including its oxygen and hydrogen content

    Sampling in low oxygen aquatic environments: The deviation from anoxic conditions

    Get PDF
    Studies of the impact of hypoxic or anoxic environments on both climate and ecosystems rely on a detailed characterization of the oxygen (O-2) distribution along the water column. The former trivial separation between oxic and anoxic conditions is now often redefined as a blurry concentration range in which both aerobic and anaerobic processes might coexist, both in situ and during experimental incubations. The O-2 concentrations during such incubations have often been assumed to be equal to in situ levels, but the concentration was rarely measured. In order to evaluate the actual oxygen concentration in samples collected from low-oxygen environments, a series of measurements were performed on samples collected in the Pacific oxygen minimum zones. Our results show a significant deviation from in situ anoxic conditions in samples collected by Niskin bottles where leakage from the bottle material resulted in O-2 concentrations of up to 1 mu M. Subsequent sampling further increased the O-2 contamination. Sampling and analysis by Winkler method resulted in variable apparent concentrations of 2-4 mu M. Two common procedures to avoid atmospheric contamination were also tested: allowing gentle overflow and keeping the sampling bottle submersed in a portion of the sampled water. Both procedures resulted in similar O-2 contamination with values of 0.5-1.5 mu M when bottles were immediately closed and measurements performed with optical sensors, and 3-4 mu M apparent concentration when analyzed by the Winkler method. Winkler titration is thus not suited for analysis of low-O-2 samples. It can be concluded that incubation under anoxic conditions requires deoxygenation after conventional sampling.We would like to thank Lars B. Pedersen at Aarhus University for the construction of STOX sensors. We are grateful to the cruise leaders Bess B. Ward and Frank Stewart for the invitation to participate in OMZ cruises. We also thank the captains and crews of the R/Vs L'Atalante, New Horizon, Oceanus and Sally Ride. We additionally thank A. Franco-Garcia, M. Giraud, J. Ledesma, F. Baurand, D. Lefevre, B. Dewitte, C. Maes, V. Garcon and the PACOP platform (Toulouse) for operational and experimental support during the AMOP cruise. This work was funded by the Poul Due Jensen Foundation and co-financed by the 2014-2020 ERDF Operational Programme and by the Department of Economy, Knowledge, Business and University of the Regional Government of Andalusia (to EGR, project reference FEDER-UCA18-107225)

    Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean

    Get PDF
    Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∌4.40 to 6.40 mmol:mol and ∌6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∌4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∌7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect

    Phosphate determination in seawater : toward an autonomous electrochemical method

    No full text
    Initial steps to create an autonomous in situ electrochemical sensor for orthophosphate determination in seawater are presented. First, the optimal conditions to form the molybdophosphate complex in artificial seawater medium were determined by addition of sulphuric acid and sodium molybdate to the solution containing orthophosphate. Secondly, the anodic oxidation of molybdenum to form molybdate ions and protons was used to create the molybdophosphate complex without addition of any liquid reagents. The molybdophosphate complex is detectable by amperometry with an average precision of 2.2% for the concentration range found in the open ocean and the detection limit is 0.12 mu M. Three solutions are proposed to address the silicate interferences issue and one of these methods is used for the natural samples collected in the coastal waters offshore Peru during the Pelagico 1011-12-BIC OLAYA cruise in November-December 2010. Results showed a good precision with an average of 2.5% and a reasonable deviation of the amperometric analysis as compared with colorimetric measurements (4.9%)

    High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone: Sensitivity to the tropical oceanic circulation

    Get PDF
    The connection between the equatorial mean circulation and the oxygen minimum zone (OMZ) in the Eastern Tropical Pacific is investigated through sensitivity experiments with a high-resolution coupled physical-biogeochemical model. A validation against in situ observations indicates a realistic simulation of the vertical and horizontal oxygen distribution by the model. Two sets of climatological open-boundary conditions for the physical variables, which differ slightly with respect to the intensity and vertical structure of the Equatorial Current System, are shown to lead to contrasting characteristics of the simulated OMZ dynamics. From a Lagrangian perspective, the mean differences near the coast originate to a large extent from the different transport of deoxygenated waters by the secondary Tsuchiya Jet (secondary Southern Subsurface Countercurrent, sSSCC). The O-2 budget further indicates a large difference in the balance between tendency terms, with advection exhibiting the largest difference between both simulations, which is shown to result from both linear and nonlinear advection. At regional scale, we also find that the variability of the physical contribution to the rate of O-2 change is one order of magnitude larger than the variability associated with the biogeochemical contribution, which originates from internal high-frequency variability. Overall our study illustrates the large sensitivity of the OMZ dynamics to the equatorial circulation

    Seasonal Variability of the Southern Tip of the Oxygen Minimum Zone in the Eastern South Pacific (30°‐38°S): A Modeling Study

    No full text
    We investigate the seasonal variability of the southern tip (30 degrees-38 degrees S) of the eastern South Pacific oxygen minimum zone (OMZ) based on a high horizontal resolution (1/12 degrees) regional coupled physical-biogeochemical model simulation. The simulation is validated by available in situ observations and the OMZ seasonal variability is documented. The model OMZ, bounded by the contour of 45 mu M, occupies a large volume (4.5x10(4) km(3)) during the beginning of austral winter and a minimum (3.5x10(4) km(3)) at the end of spring, just 1 and 2 months after the southward transport of the Peru-Chile Undercurrent (PCUC) is maximum and minimum, respectively. We showed that the PCUC significantly impacts the alongshore advection of dissolved oxygen (DO) modulating the OMZ seasonal variability. However, zonal transport of DO by meridionally alternating zonal jets and mesoscale eddy fluxes play also a major role in the seasonal and spatial variability of the OMZ. Consistently, a DO budget analysis reveals a significant contribution of advection terms to the rate of change of DO and the prominence of mesoscale variability within the seasonal cycle of these terms. Biogeochemical processes and horizontal and vertical mixing, associated with subgrid scale processes, play only a secondary role in the OMZ seasonal cycle. Overall, our study illustrates the interplay of mean and (mesoscale) eddy-induced transports of DO in shaping the OMZ and its seasonal cycle off Central Chile

    Boundaries of the Peruvian oxygen minimum zone shaped by coherent mesoscale dynamics

    No full text
    Dissolved oxygen in sea water affects marine habitats and biogeochemical cycles. Oceanic zones with oxygen deficits represent 7% of the volume and 8% of the area of the oceans, and are thought to be expanding. One of the most pronounced lies in the region off Peru, where mesoscale activity in the form of fronts and eddies is strong. Here, we study the dynamics of the Peruvian oxygen minimum zone in a Lagrangian framework, using a coupled physical-biogeochemical numerical model and finite-size Lyapunov exponent fields, to evaluate the role of mesoscale activity. We find that, at depths between 380 and 600 m, mesoscale structures have two distinct roles. First, their mean positions and paths delimit and maintain the oxygen minimum zone boundaries. Second, their high-frequency fluctuations inject oxygen across the oxygen minimum zone boundaries and eddy fluxes are one order of magnitude higher than mean oxygen fluxes. We conclude that these eddy fluxes contribute to the ventilation of the Peruvian oxygen minimum zone

    Response of the South Eastern Pacific Oxygen Minimum Zone to ENSO

    No full text
    While observations suggest a long-term expansion of the Oxygen Minimum Zone (OMZ) in the South Eastern Pacific (SEP), it also exhibits a large interannual to decadal variability in its upper and lower limits. The uncertainty of the fate of the SEP OMZ in a warmer climate as simulated by Earth system models also questions to which extent natural variability in the OMZ can obscure the detection of externally forced trends. Here we analyze long-term simulations from a hierarchy of models of the OMZ off Peru and Chile and show that a significant share of the variability is not linearly related to climate modes (including ENSO), suggesting that it originates from internal dynamics associated to both local non-linear physical and biogeochemical processes. Still the OMZ volume tends to shrink during strong Eastern Pacific El Niño while it expands during La Niña and Central Pacific El Niño events. It is shown in particular that La Niña and strong El Niño events significantly modulate the OMZ volume through the transport of water masses of equatorial origin by the Peru/Chile undercurrent and the propagation of extra-tropical Rossby waves. Implications of our results are discussed in terms of the challenge for developing an Eastern Pacific observing system in the frame of the TPOS2020 program, considering the time of emergence for climate-trend detection above background variability
    corecore